A sample of my data file is below. Note that I have not included all of the header. Note also that often a specific data value is left blank (in this case CALL for rows 1 and 5 but it can be other columns too).
USAF WBAN STATION NAME CTRY ST CALL LAT LON ELEV(M) BEGIN END
703165 99999 SAND POINT US AK +55.333 -160.500 +0006.0 19730107 20041231
703210 25513 DILLINGHAM AIRPORT US AK PADL +59.050 -158.517 +0026.2 20060101 20200516
703210 99999 DILLINGHAM MUNI US AK PADL +59.050 -158.517 +0029.0 19730101 20051231
703260 25503 KING SALMON AIRPORT US AK PAKN +58.683 -156.656 +0020.4 19420110 20200516
703263 99999 KING SALMON US AK +58.683 -156.683 +0017.0 19801002 19960630
I'd like to simply read each column in as a different 1 dimensional numpy array. I've used the following code:
usaf, wban, name, ctry, st, call, lat3, lon3, elv, begin, end = \
np.genfromtxt('./documentation/isd-history.txt', \
dtype=('S6', 'S6', 'S30', 'S3', 'S5', 'S5', float, float, float, int, int), \
comments='None', delimiter=[6, 6, 30, 3, 5, 5, 9, 9, 8, 9, 9 ],\
skip_header=22, unpack=True)
I get the following error
ValueError: too many values to unpack
This seems like a pretty straightforward procedure but clearly I'm missing something. Any advice is appreciated.
Your sample with the delimiter does produce 11 fields:
In [83]: data = np.genfromtxt(txt.splitlines(),delimiter=[6, 6, 30, 3, 5, 5, 9, 9, 8, 9,
...: 9 ],names=True, dtype=None, encoding=None)
In [84]: data
Out[84]:
array([(703165, 99999, ' SAND POINT ', ' US', ' AK', ' ', 55.333, -160.5 , 6. , 19730107, 20041231),
(703210, 25513, ' DILLINGHAM AIRPORT ', ' US', ' AK', ' PADL', 59.05 , -158.517, 26.2, 20060101, 20200516),
(703210, 99999, ' DILLINGHAM MUNI ', ' US', ' AK', ' PADL', 59.05 , -158.517, 29. , 19730101, 20051231),
(703260, 25503, ' KING SALMON AIRPORT ', ' US', ' AK', ' PAKN', 58.683, -156.656, 20.4, 19420110, 20200516),
(703263, 99999, ' KING SALMON ', ' US', ' AK', ' ', 58.683, -156.683, 17. , 19801002, 19960630)],
dtype=[('USAF', '<i8'), ('WBAN', '<i8'), ('STATION_NAME', '<U30'), ('CT', '<U3'), ('RY_ST', '<U5'), ('CALL', '<U5'), ('LAT', '<f8'), ('LON', '<f8'), ('ELEVM', '<f8'), ('BEGIN', '<i8'), ('END', '<i8')])
or with the rest of your command
In [93]: data=np.genfromtxt(txt.splitlines(), \
...: dtype=('S6', 'S6', 'S30', 'S3', 'S5', 'S5', float, float, float, int, int), \
...: comments='None', delimiter=[6, 6, 30, 3, 5, 5, 9, 9, 8, 9, 9 ],\
...: skip_header=1
...: )
In [94]: data.dtype.fields
Out[94]:
mappingproxy({'f0': (dtype('S6'), 0),
'f1': (dtype('S6'), 6),
'f2': (dtype('S30'), 12),
'f3': (dtype('S3'), 42),
'f4': (dtype('S5'), 45),
'f5': (dtype('S5'), 50),
'f6': (dtype('float64'), 55),
'f7': (dtype('float64'), 63),
'f8': (dtype('float64'), 71),
'f9': (dtype('int64'), 79),
'f10': (dtype('int64'), 87)})
unpack=True
doesn't change that.
unpack : bool, optional
If True, the returned array is transposed, so that arguments may be
unpacked using ``x, y, z = loadtxt(...)``
With compound dtype, fields, the array is 1d:
In [99]: data.shape
Out[99]: (5,)
and the transpose does nothing. This unpacking
only works if the dtype is simple, and result is a 2d array (e.g. (5,11), transpose to (11,5) and unpack to 11 variables.). Unpacking should be clearer about that distinction.
You can unpack fields with individual assignment
In [100]: data['f0']
Out[100]: array([b'703165', b'703210', b'703210', b'703260', b'703263'], dtype='|S6')
In [101]: data['f2']
Out[101]:
array([b' SAND POINT ',
b' DILLINGHAM AIRPORT ',
b' DILLINGHAM MUNI ',
b' KING SALMON AIRPORT ',
b' KING SALMON '], dtype='|S30')
In [102]: data.dtype.names
Out[102]: ('f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10')
In [103]: foo,bar,baz = [data[name] for name in data.dtype.names[:3]]
In [104]: bar
Out[104]: array([b' 99999', b' 25513', b' 99999', b' 25503', b' 99999'], dtype='|S6')