I am using XGBRegressor
to fit the model using gridsearchcv
. I want to visulaize the trees.
Here is the link I followed ( If duplicate) how to plot a decision tree from gridsearchcv?
xgb = XGBRegressor(learning_rate=0.02, n_estimators=600,silent=True, nthread=1)
folds = 5
grid = GridSearchCV(estimator=xgb, param_grid=params, scoring='neg_mean_squared_error', n_jobs=4, verbose=3 )
model=grid.fit(X_train, y_train)
Approach 1:
dot_data = tree.export_graphviz(model.best_estimator_, out_file=None,
filled=True, rounded=True, feature_names=X_train.columns)
dot_data
Error: NotFittedError: This XGBRegressor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.
Approach 2:
tree.export_graphviz(best_clf, out_file='tree.dot',feature_names=X_train.columns,leaves_parallel=True)
subprocess.call(['dot', '-Tpdf', 'tree.dot', '-o' 'tree.pdf'])
Same error.
scikit-learn's tree.export_graphviz
will not work here, because your best_estimator_
is not a single tree, but a whole ensemble of trees.
Here is how you can do it using XGBoost's own plot_tree
and the Boston housing data:
from xgboost import XGBRegressor, plot_tree
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
X, y = load_boston(return_X_y=True)
params = {'learning_rate':[0.1, 0.5], 'n_estimators':[5, 10]} # dummy, for demonstration only
xgb = XGBRegressor(learning_rate=0.02, n_estimators=600,silent=True, nthread=1)
grid = GridSearchCV(estimator=xgb, param_grid=params, scoring='neg_mean_squared_error', n_jobs=4)
grid.fit(X, y)
Our best estimator is:
grid.best_estimator_
# result (details may be different due to randomness):
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0,
importance_type='gain', learning_rate=0.5, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=10,
n_jobs=1, nthread=1, objective='reg:linear', random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
silent=True, subsample=1, verbosity=1)
Having done that, and utilizing the answer from this SO thread to plot, say, tree #4:
fig, ax = plt.subplots(figsize=(30, 30))
plot_tree(grid.best_estimator_, num_trees=4, ax=ax)
plt.show()
Similarly, for tree #1:
fig, ax = plt.subplots(figsize=(30, 30))
plot_tree(grid.best_estimator_, num_trees=1, ax=ax)
plt.show()