If I am using two method (NN and KNN) with caret and then I want to provide significance test, how can I do wilcoxon test.
I provided sample of my data as follows
structure(list(Input = c(25, 193, 70, 40), Output = c(150, 98,
27, 60), Inquiry = c(75, 70, 0, 20), File = c(60, 36, 12, 12),
FPAdj = c(1, 1, 0.8, 1.15), RawFPcounts = c(1750, 1902, 535,
660), AdjFP = c(1750, 1902, 428, 759), Effort = c(102.4,
105.2, 11.1, 21.1)), row.names = c(NA, 4L), class = "data.frame")
d=readARFF("albrecht.arff")
index <- createDataPartition(d$Effort, p = .70,list = FALSE)
tr <- d[index, ]
ts <- d[-index, ]
boot <- trainControl(method = "repeatedcv", number=100)
cart1 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
postResample(predict(cart1, ts), log10(ts$Effort))
cart2 <- train(log10(Effort) ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot)
postResample(predict(cart2, ts), log10(ts$Effort))
How to perform wilcox.test()
here.
Warm regards
One way to deal with your problem is to generate several performance values for knn and NN which you can compare using a statistical test. This can be achieved using Nested resampling.
In nested resampling you are performing train/test splits multiple times and evaluating the model on each test set.
Lets for instance use BostonHousing data:
library(caret)
library(mlbench)
data(BostonHousing)
lets just select numerical columns for the example to make it simple:
d <- BostonHousing[,sapply(BostonHousing, is.numeric)]
As far as I know there is no way to perform nested CV in caret out of the box so a simple wrapper is needed:
generate outer folds for nested CV:
outer_folds <- createFolds(d$medv, k = 5)
Lets use bootstrap resampling as the inner resample loop to tune the hyper parameters:
boot <- trainControl(method = "boot",
number = 100)
now loop over the outer folds and perform hyper parameter optimization using the train set and predict on the test set:
CV_knn <- lapply(outer_folds, function(index){
tr <- d[-index, ]
ts <- d[index,]
cart1 <- train(medv ~ ., data = tr,
method = "knn",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot,
tuneLength = 10) #to keep it short we will just probe 10 combinations of hyper parameters
postResample(predict(cart1, ts), ts$medv)
})
extract just MAE from the results:
sapply(CV_knn, function(x) x[3]) -> CV_knn_MAE
CV_knn_MAE
#output
Fold1.MAE Fold2.MAE Fold3.MAE Fold4.MAE Fold5.MAE
2.503333 2.587059 2.031200 2.475644 2.607885
Do the same for glmnet learner for instance:
CV_glmnet <- lapply(outer_folds, function(index){
tr <- d[-index, ]
ts <- d[index,]
cart1 <- train(medv ~ ., data = tr,
method = "glmnet",
metric = "MAE",
preProc = c("center", "scale", "nzv"),
trControl = boot,
tuneLength = 10)
postResample(predict(cart1, ts), ts$medv)
})
sapply(CV_glmnet, function(x) x[3]) -> CV_glmnet_MAE
CV_glmnet_MAE
#output
Fold1.MAE Fold2.MAE Fold3.MAE Fold4.MAE Fold5.MAE
3.400559 3.383317 2.830140 3.605266 3.525224
now compare the two using wilcox.test
. Since the performance for both learners was generated using the same data splits a paired test is appropriate:
wilcox.test(CV_knn_MAE,
CV_glmnet_MAE,
paired = TRUE)
If comparing more than two algorithms one can use friedman.test