Can you please help me to work with column having delimited integer values in python ?
How can we create an additional column say "PHR_INSTANTENEOUS_MIN" which stores the minimum value of the numbers in PHR_INSTANTENEOUS. Like in first row : "-18" and in third row "14"
Similarly : PHR_INSTANTENEOUS_MIN , PHR_INSTANTENEOUS_MEDIAN, PHR_INSTANTENEOUS_MODE derived values.
Similar thing to be repeated for SINR_INSTANTENEOUS values, and we need to form derived values.
df1
START_TIME PRIMARY_KEY PHR_INSTANTANEOUS SINR_INSTANTANEOUS
2020-03-10 12:00:00 e7ca9da318f1 -18|-17 9|8
2020-03-10 12:01:00 68615e3db513 1 26
2020-03-10 12:05:00 7f250354808a 14|18|20|20 26|26|24|26
2020-03-10 12:07:00 9202ab7611d4 -8|-7|40 22|6|-2
2020-03-10 12:12:00 377bf955bdc0 4|9 26|20
Full Data set image is below :
Here's a way to do that:
import pandas as pd
from statistics import median, mode
import numpy as np
df = pd.DataFrame(['-18|-17', '1', '14|18|20|20', '-8|-7|40', 5.2, np.nan], columns=['PHR_INSTANTANEOUS'])
# make sure the dtype is uniformly string
df['PHR_INSTANTANEOUS'] = df['PHR_INSTANTANEOUS'].astype(str)
# get the values
df['PHR_INSTANTANEOUS'].apply(lambda x: min(map(float, x.split('|')))) # minimum
df['PHR_INSTANTANEOUS'].apply(lambda x: median(map(float, x.split('|')))) # median
df['PHR_INSTANTANEOUS'].apply(lambda x: mode(map(float, x.split('|')))) # mode