In Fortran, it is not possible to make a member variable of a derived type a target. (I guess this has to do with the standard not specifying how a derived type is stored in memory?) However, I can have a pointer as a member variable and associate pointers with pointers. Like I do in the example below.
module DataMod
type DataType
real(8), private, dimension(:,:), pointer, contiguous :: A
real(8), private, dimension(:,:), pointer, contiguous :: B
integer :: n
contains
procedure :: alloc
procedure :: set
procedure :: print_
final :: dealloc
end type DataType
interface DataType
procedure :: NewDataType
end interface DataType
contains
function NewDataType(dimension_) result(new)
integer, intent(in) :: dimension_
type(DataType) :: new
new%n = dimension_
end function NewDataType
subroutine alloc(dataObject)
class(DataType) :: dataObject
allocate(dataObject%A(dataObject%n,dataObject%n))
allocate(dataObject%B(dataObject%n,dataObject%n))
end subroutine alloc
subroutine set(dataObject, datas, choice)
class(DataType) :: dataObject
real(8), dimension(dataObject%n,dataObject%n), intent(in) :: datas
character(len=1), intent(in) :: choice
real(8), dimension(:,:), pointer :: dataPointer
integer :: i,j
if(choice .eq. 'A') then
datapointer => dataObject%A
elseif(choice .eq. 'B') then
datapointer => dataObject%B
else
stop
endif
do j = 1,dataObject%n
do i = 1,dataObject%n
datapointer(i,j) = datas(i,j)
enddo
enddo
end subroutine set
subroutine print_(dataObject)
class(DataType), intent(in) :: dataObject
print *, 'A'
print *, dataObject%A(1:dataObject%n,1:dataObject%n)
print *
print *, 'B'
print *, dataObject%B(1:dataObject%n,1:dataObject%n)
end subroutine print_
subroutine dealloc(dataObject)
type(DataType) :: dataObject
deallocate(dataObject%A)
deallocate(dataObject%B)
end subroutine dealloc
end module DataMod
program DataTest
use DataMod, only: DataType
implicit none
real(8), dimension(2,2) :: testArray
type(DataType) :: testType
testType = DataType(2)
call testType%alloc()
testArray(1,1) = 1
testArray(2,1) = 2
testArray(1,2) = 3
testArray(2,2) = 4
call testType%set(testArray, 'A')
testArray(1,1) = 5
testArray(2,1) = 6
testArray(1,2) = 7
testArray(2,2) = 8
call testType%set(testArray, 'B')
call testType%print_()
end program DataTest
In the set routine, I use an if statement to set a pointer to decide if it should dump the incoming matrix in A or B. In the program I'm currently working on, I must decide which combination of four different matrices to multiply together and setting a pair of pointers is much nicer than writing 16 almost identical calls to dgemm.
My question is if there are any problems with this approach besides the normal dangers of dangling pointers etc. or a way to do this without pointers? The arrays should not be accessed from outside the object. Are there any performance issues?
Components in a type definition may not be declared with the TARGET attribute (beyond the missing syntax, that would be inconsistent with other concepts and rules in the current language), but if a variable of derived type has the TARGET attribute, then all of its subobjects have the TARGET attribute too. For a type definition:
type DataType
real(8), private, dimension(:,:), allocatable :: A
real(8), private, dimension(:,:), allocatable :: B
...
The procedure set could be written...
subroutine set(dataObject, datas, choice)
class(DataType), TARGET :: dataObject
real(8), dimension(dataObject%n,dataObject%n), intent(in) :: datas
character(len=1), intent(in) :: choice
real(8), dimension(:,:), pointer :: dataPointer
! require dataobject%A and ..%B to already be allocated.
if(choice .eq. 'A') then
datapointer => dataObject%A
elseif(choice .eq. 'B') then
datapointer => dataObject%B
else
stop
endif
datapointer = datas ! or some other operation.
...
(dataPointer
could be declared contiguous, the allocatable arrays that it gets pointed at are always contiguous.)
An actual argument without the TARGET attribute may be associated with a dummy argument with the TARGET attribute. If this is the case, then pointers associated with the dummy argument become undefined when execution of the procedure completes. (Such pointers may also become undefined in some cases, even when the actual argument has the TARGET attribute - see F2018 15.5.2.4p8 on for details - but these cases don't apply to scalars.)
Consequently, in the general case, if a pointer to one of the components of an object of derived type needs to outlive a procedure like set
above (e.g. if dataPointer
was not local to set
) and you can't ensure that the actual argument will always have the TARGET attribute, then the original method using pointer components may be more appropriate. The implementation in the question appears to be ok - though I would suggest making the finalizer IMPURE ELEMENTAL to make things more robust to future changes.