python-3.xtensorflowkerasnlpmachine-translation

Add attention layer to Seq2Seq model


I have build a Seq2Seq model of encoder-decoder. I want to add an attention layer to it. I tried adding attention layer through this but it didn't help.

Here is my initial code without attention

# Encoder
encoder_inputs = Input(shape=(None,))
enc_emb =  Embedding(num_encoder_tokens, latent_dim, mask_zero = True)(encoder_inputs)
encoder_lstm = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder_lstm(enc_emb)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,))
dec_emb_layer = Embedding(num_decoder_tokens, latent_dim, mask_zero = True)
dec_emb = dec_emb_layer(decoder_inputs)
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(dec_emb,
                                     initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.summary()

And this is the code after I added attention layer in decoder (the encoder layer is same as in initial code)

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,))
dec_emb_layer = Embedding(num_decoder_tokens, latent_dim, mask_zero = True)
dec_emb = dec_emb_layer(decoder_inputs)
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
attention = dot([decoder_lstm, encoder_lstm], axes=[2, 2])
attention = Activation('softmax')(attention)
context = dot([attention, encoder_lstm], axes=[2,1])
decoder_combined_context = concatenate([context, decoder_lstm])
decoder_outputs, _, _ = decoder_combined_context(dec_emb,
                                     initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.summary()

While doing this, I got an error

 Layer dot_1 was called with an input that isn't a symbolic tensor. Received type: <class 'keras.layers.recurrent.LSTM'>. Full input: [<keras.layers.recurrent.LSTM object at 0x7f8f77e2f3c8>, <keras.layers.recurrent.LSTM object at 0x7f8f770beb70>]. All inputs to the layer should be tensors.

Can someone please help in fitting an attention layer in this architecture?


Solution

  • the dot products need to be computed on tensor outputs... in encoder you correctly define the encoder_output, in decoder you have to add decoder_outputs, state_h, state_c = decoder_lstm(enc_emb, initial_state=encoder_states)

    the dot products now are

    attention = dot([decoder_outputs, encoder_outputs], axes=[2, 2])
    attention = Activation('softmax')(attention)
    context = dot([attention, encoder_outputs], axes=[2,1])
    

    the concatenation doesn't need initial_states. you have to define it in your rnn layer: decoder_outputs, state_h, state_c = decoder_lstm(enc_emb, initial_state=encoder_states)

    here the full example

    ENCODER + DECODER

    # dummy variables
    num_encoder_tokens = 30
    num_decoder_tokens = 10
    latent_dim = 100
    
    encoder_inputs = Input(shape=(None,))
    enc_emb =  Embedding(num_encoder_tokens, latent_dim, mask_zero = True)(encoder_inputs)
    encoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
    encoder_outputs, state_h, state_c = encoder_lstm(enc_emb)
    # We discard `encoder_outputs` and only keep the states.
    encoder_states = [state_h, state_c]
    
    # Set up the decoder, using `encoder_states` as initial state.
    decoder_inputs = Input(shape=(None,))
    dec_emb_layer = Embedding(num_decoder_tokens, latent_dim, mask_zero = True)
    dec_emb = dec_emb_layer(decoder_inputs)
    # We set up our decoder to return full output sequences,
    # and to return internal states as well. We don't use the
    # return states in the training model, but we will use them in inference.
    decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
    decoder_outputs, _, _ = decoder_lstm(dec_emb,
                                         initial_state=encoder_states)
    decoder_dense = Dense(num_decoder_tokens, activation='softmax')
    decoder_outputs = decoder_dense(decoder_outputs)
    
    # Define the model that will turn
    # `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
    model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
    model.summary()
    

    DECODER w\ ATTENTION

    # Set up the decoder, using `encoder_states` as initial state.
    decoder_inputs = Input(shape=(None,))
    dec_emb_layer = Embedding(num_decoder_tokens, latent_dim, mask_zero = True)
    dec_emb = dec_emb_layer(decoder_inputs)
    # We set up our decoder to return full output sequences,
    # and to return internal states as well. We don't use the
    # return states in the training model, but we will use them in inference.
    decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
    decoder_outputs, state_h, state_c = decoder_lstm(dec_emb, initial_state=encoder_states)
    attention = dot([decoder_outputs, encoder_outputs], axes=[2, 2])
    attention = Activation('softmax')(attention)
    context = dot([attention, encoder_outputs], axes=[2,1])
    decoder_outputs = concatenate([context, decoder_outputs])
    decoder_dense = Dense(num_decoder_tokens, activation='softmax')(decoder_outputs)
    
    # Define the model that will turn
    # `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
    model = Model([encoder_inputs, decoder_inputs], decoder_dense)
    model.summary()