pythonkerasscikit-learnmultilabel-classification

Error in fit method of scikit learn chain classifier with a keras model for a multilabel problem


I'm building a chain classifier for a multiclass problem that uses KerasClassifier model. I have 17 labels as classification target and shape of X_train is (111300,107) and y_train is (111300,17) My code is here:

def create_model():
  input_size=length_long_sentence
  embedding_size=128
  lstm_size=64
  output_size=len(unique_tag_set)
    #----------------------------Model -------------------------------
  current_input=Input(shape=(input_size,)) 
  emb_current = Embedding(vocab_size, embedding_size, input_length=input_size)(current_input)
  out_current=Bidirectional(LSTM(units=lstm_size))(emb_current )
  #out_current = Reshape((1,2*lstm_size))(out_current)
  output = Dense(units=len(unique_tag_set), activation='softmax')(out_current)
  model = Model(inputs=current_input, outputs=output)
  model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])
  print(model.summary())
  return model

   model = KerasClassifier(build_fn=create_model, epochs=1,batch_size=256)
   print(type(model))
   chain=ClassifierChain(model, order='random', random_state=42)
   history=chain.fit(X_train, y_train)

The Model summary is here:

enter image description here

When tried to ti use the fit method on ClassifierChain, I'm getting this error:

enter image description here

Any one can guide me about this error and what is (None,2)?


Solution

  • From documention of chain classifier:

    A multi-label model that arranges binary classifiers into a chain.

    Hence convert your keras model as binary classifier using a single node in final layer and loss function as binary_crossentropy