In order to calculate frequency of each value by id, we can do something using value_counts and groupby.
>>> df = pd.DataFrame({"id":[1,1,1,2,2,2], "col":['a','a','b','a','b','b']})
>>> df
id col
0 1 a
1 1 a
2 1 b
3 2 a
4 2 b
5 2 b
>>> df.groupby('id')['col'].value_counts()
id col
1 a 2
b 1
2 b 2
a 1
But I would like to get results stored in dictionary format, not Series. So how am I able to achieve that and also the speed is fast if we have a large dataset? The ideal format is:
id
1 {'a': 2, 'b': 1}
2 {'a': 1, 'b': 2}
You can unstack the groupby result to get a dict-of-dicts:
df.groupby('id')['col'].value_counts().unstack().to_dict(orient='index')
# {1: {'a': 2, 'b': 1}, 2: {'a': 1, 'b': 2}}
If you want a Series of dicts, use agg
instead of to_dict
:
df.groupby('id')['col'].value_counts().unstack().agg(pd.Series.to_dict)
col
a {1: 2, 2: 1}
b {1: 1, 2: 2}
dtype: object
I don't recommend storing data in this format, objects are generally more troublesome to work with.
If unstacking generates NaNs, try an alternative with GroupBy.agg
:
df.groupby('id')['col'].agg(lambda x: x.value_counts().to_dict())
id
1 {'a': 2, 'b': 1}
2 {'b': 2, 'a': 1}
Name: col, dtype: object