I'm trying to convert a UNet model that I created with Keras into a .nn for use in unity's neural networking backend. However I'm getting this error. For my model export I exported an '.h5' which I converted into a binary '.pb', and later I used the tensorflow_to_barracuda.py. Is there maybe someone with a working segmentation program in unity?
Converting unet_person.bytes to unet_person.nn
IGNORED: PlaceholderWithDefault unknown layer
IGNORED: Switch unknown layer
IGNORED: Switch unknown layer
IGNORED: Shape unknown layer
IGNORED: Switch unknown layer
IGNORED: Merge unknown layer
IGNORED: Shape unknown layer
IGNORED: Shape unknown layer
---------------------------------------------------------------------------
UnboundLocalError Traceback (most recent call last)
<ipython-input-22-d09d8c6d2c1a> in <module>
1 from mlagents.trainers import tensorflow_to_barracuda as tb
2
----> 3 tb.convert('unet_person.bytes', 'unet_person.nn')
/anaconda3/lib/python3.6/site-packages/mlagents/trainers/tensorflow_to_barracuda.py in convert(source_file, target_file, trim_unused_by_output, verbose, compress_f16)
938 o_model = barracuda.Model()
939 o_model.layers, o_input_shapes, o_model.tensors, o_model.memories = \
--> 940 process_model(i_model, args)
941
942 # Cleanup unconnected Identities (they might linger after processing complex node patterns like LSTM)
/anaconda3/lib/python3.6/site-packages/mlagents/trainers/tensorflow_to_barracuda.py in process_model(model, args)
870 nodes = nodes_as_array[node_index:pattern_end]
871 name = nodes[-1].name
--> 872 var_tensors, const_tensors = get_tensors(nodes)
873 if args.print_patterns or args.verbose:
874 print('PATTERN:', name, '~~', pattern_name, pattern, '<-', var_tensors, '+', [t.name for t in const_tensors])
/anaconda3/lib/python3.6/site-packages/mlagents/trainers/tensorflow_to_barracuda.py in get_tensors(pattern_nodes)
845 tensor_nodes = [n for n in pattern_nodes if n.op == 'Const']
846 tensors = [Struct(name = n.name, obj = n.attr["value"].tensor, shape = get_tensor_dims(n.attr["value"].tensor), data = get_tensor_data(n.attr["value"].tensor))
--> 847 for n in tensor_nodes]
848
849 # TODO: unify / reuse code from process_layer
/anaconda3/lib/python3.6/site-packages/mlagents/trainers/tensorflow_to_barracuda.py in <listcomp>(.0)
845 tensor_nodes = [n for n in pattern_nodes if n.op == 'Const']
846 tensors = [Struct(name = n.name, obj = n.attr["value"].tensor, shape = get_tensor_dims(n.attr["value"].tensor), data = get_tensor_data(n.attr["value"].tensor))
--> 847 for n in tensor_nodes]
848
849 # TODO: unify / reuse code from process_layer
/anaconda3/lib/python3.6/site-packages/mlagents/trainers/tensorflow_to_barracuda.py in get_tensor_data(tensor)
492 if tensor.bool_val:
493 data = np.array(tensor.bool_val, dtype=float)
--> 494 return np.array(data).reshape(dims)
495
496 def flatten(items,enter=lambda x:isinstance(x, list)):
UnboundLocalError: local variable 'data' referenced before assignment
In Barracuda 1.0, there is a way to convert Keras (.h5) models into ONNX models with the use of the Keras2ONNX pip package.
You install keras2ONNX and then run
import keras2onnx
onnx_model = keras2onnx.convert_keras(unet, name='unet')
keras2onnx.save_model(onnx_model, "unet.onnx")
Note that you made need the following flag: channel_first_inputs=[unet.layers[0].layers[0]]
onnx_model = keras2onnx.convert_keras(unet, name='unet')
Since Barracuda inputs are channel first, meaning that say for a batch_size x width x height x rgb image, the ordering is rgb x width x height x batch_size.