I am trying to make a function with this data and would really appreciate help with this!
example<- data.frame(Day=c(2,4,8,16,32,44,2,4,8,16,32,44,2,4,8,16,32,44),
Replicate=c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,
1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,
1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3),
Treament=c("CC","CC","CC","CC","CC","CC","CC","CC","CC","CC","CC","CC","CC","CC","CC","CC","CC","CC",
"HP","HP","HP","HP","HP","HP","HP","HP","HP","HP","HP","HP","HP","HP","HP","HP","HP","HP",
"LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL"),
AFDM=c(94.669342,94.465752,84.897023,81.435993,86.556221,75.328294,94.262162,88.791240,75.735474,81.232403,
67.050593,76.346244,95.076522,88.968823,83.879073,73.958836,70.645724,67.184695,99.763156,92.022673,
92.245362,74.513934,50.083136,36.979418,94.872932,86.353037,81.843173,67.795465,46.622106,18.323099,
95.089932,93.244212,81.679814,65.352385,18.286525,7.517794,99.559972,86.759404,84.693433,79.196504,
67.456961,54.765706,94.074014,87.543693,82.492548,72.333367,51.304676,51.304676,98.340870,86.322153,
87.950873,84.693433,63.316485,63.723665))
Example:
I want to insert a new row with an AFDM value (e.g., 0.9823666) that was calculated with another function.
This new row must be on each Day 2 (and call it as Day 0), and I want to preserve the name of each Replica and Treatment of each group.
Thus, this new row must be: Day 0, Replicate=same, Treatment=same, AFDM=0.9823666
.
This is so I can later run a regression with the data (from 0 to 44, 3 replicates for each Treatment).
I would prefer a solution on dplyr
.
Thanks in advance
We can create a grouping column with cumsum
, then expand the dataset with complete
and fill
the other columns
library(dplyr)
library(tidyr)
example %>%
group_by(grp = cumsum(Day == 2)) %>%
complete(Day = c(0, unique(Day)), fill = list(AFDM = 0.9823666)) %>%
fill(Replicate, Treament, .direction = 'updown')
# A tibble: 63 x 5
# Groups: grp [9]
# grp Day Replicate Treament AFDM
# <int> <dbl> <dbl> <chr> <dbl>
# 1 1 0 1 CC 0.982
# 2 1 2 1 CC 94.7
# 3 1 4 1 CC 94.5
# 4 1 8 1 CC 84.9
# 5 1 16 1 CC 81.4
# 6 1 32 1 CC 86.6
# 7 1 44 1 CC 75.3
# 8 2 0 2 CC 0.982
# 9 2 2 2 CC 94.3
#10 2 4 2 CC 88.8
# … with 53 more rows