I would like to add a gradient of colours following the fitted values (e.g. higher fitted values darker colours, lower fitted values lighter colours) in my three-dimensional dependence plots.
I have used the example presented in dismo package:
library(dismo)
data(Anguilla_train)
angaus.tc5.lr01 <- gbm.step(data=Anguilla_train, gbm.x = 3:13, gbm.y = 2,
family = "bernoulli", tree.complexity = 5, learning.rate = 0.01,
bag.fraction = 0.5)
# Find interactions in the gbm model:
find.int <- gbm.interactions( angaus.tc5.lr01)
find.int$interactions
find.int$rank.list
I have only managed to add the same colour to the whole plot:
gbm.perspec( angaus.tc5.lr01, 7, 1,
x.label = "USRainDays",
y.label = "SegSumT",
z.label = "Fitted values",
z.range=c(0,0.435),
col="blue")
Or to add a gradient colour but not following the fitted values:
gbm.perspec( angaus.tc5.lr01, 7, 1,
x.label = "USRainDays",
y.label = "SegSumT",
z.label = "Fitted values",
col=heat.colors(50),
z.range=c(0,0.435))
I also checked the code of function gbm.perspec, and If I understood correctly the fitted values are call inside the formula as "prediction", and later on are part of the "pred.matrix" that is passed to the final plotting: persp(x = x.var, y = y.var, z = pred.matrix...), but I have no managed to access them from the gbm.perspec formula. I tried to modified the gbm.perpec function by adding "col=heat.colors(100)[round(pred.matrix*100, 0)]" into the persp() inside the function, but it does not do what I am looking for:
persp(x = x.var, y = y.var, z = pred.matrix, zlim = z.range,
xlab = x.label, ylab = y.label, zlab = z.label,
theta = theta, phi = phi, r = sqrt(10), d = 3,
ticktype = ticktype,
col=heat.colors(100)[round(pred.matrix*100, 0)],
mgp = c(4, 1, 0), ...)
I believe the solution might come from modifying the gbm.perpec function, do you know how?
Thank you for your time!
By incorporating some of the code found here into the gbm.perspec()
source code you can create the desired effect.
First run
# Color palette (100 colors)
col.pal<-colorRampPalette(c("blue", "red"))
colors<-col.pal(100)
Then, add z.facet.center
to gbm.perspec()
source code after else
and change the z
in the code to pred.matrix
as follows,
# and finally plot the result
#
if (!perspective) {
image(x = x.var, y = y.var, z = pred.matrix, zlim = z.range)
} else {
z.facet.center <- (pred.matrix[-1, -1] + pred.matrix[-1, -ncol(pred.matrix)] +
pred.matrix[-nrow(pred.matrix), -1] + pred.matrix[-nrow(pred.matrix), -ncol(pred.matrix)])/4
# Range of the facet center on a 100-scale (number of colors)
z.facet.range<-cut(z.facet.center, 100)
persp(x=x.var, y=y.var, z=pred.matrix, zlim= z.range, # input vars
xlab = x.label, ylab = y.label, zlab = z.label, # labels
theta=theta, phi=phi, r = sqrt(10), d = 3,
col=colors[z.facet.range],# viewing pars
ticktype = ticktype, mgp = c(4,1,0), ...) #
which will give you a plot like this (please note, this is not plotted using the sample dataset which is why the interaction effect is different than the plot in the question).
Alternatively, you can create a new function. The following example modifies gbm.perspec()
to give a white-to-red gradient. Simply run the code in R, then change gbm.perspec()
to gbm.perspec2()
# interaction function
# Color palette (100 colors)
col.pal<-colorRampPalette(c("white", "pink", "red"))
colors<-col.pal(100)
gbm.perspec2 <- function(gbm.object,
x = 1, # the first variable to be plotted
y = 2, # the second variable to be plotted
pred.means = NULL, # allows specification of values for other variables
x.label = NULL, # allows manual specification of the x label
x.range = NULL, # manual range specification for the x variable
y.label = NULL, # and y la seminar committeebel
z.label = "fitted value", #default z label
y.range = NULL, # and the y
z.range = NULL, # allows control of the vertical axis
leg.coords = NULL, #can specify coords (x, y) for legend
ticktype = "detailed",# specifiy detailed types - otherwise "simple"
theta = 55, # rotation
phi=40, # and elevation
smooth = "none", # controls smoothing of the predicted surface
mask = FALSE, # controls masking using a sample intensity model
perspective = TRUE, # controls whether a contour or perspective plot is drawn
...) # allows the passing of additional arguments to plotting routine
# useful options include shade, ltheta, lphi for controlling illumination
# and cex for controlling text size - cex.axis and cex.lab have no effect
{
if (! requireNamespace('gbm') ) { stop('you need to install the gbm package to use this function') }
requireNamespace('splines')
#get the boosting model details
gbm.call <- gbm.object$gbm.call
gbm.x <- gbm.call$gbm.x
n.preds <- length(gbm.x)
gbm.y <- gbm.call$gbm.y
pred.names <- gbm.call$predictor.names
family = gbm.call$family
# and now set up range variables for the x and y preds
have.factor <- FALSE
x.name <- gbm.call$predictor.names[x]
if (is.null(x.label)) {
x.label <- gbm.call$predictor.names[x]
}
y.name <- gbm.call$predictor.names[y]
if (is.null(y.label)) {
y.label <- gbm.call$predictor.names[y]
}
data <- gbm.call$dataframe[ , gbm.x, drop=FALSE]
n.trees <- gbm.call$best.trees
# if marginal variable is a vector then create intervals along the range
if (is.vector(data[,x])) {
if (is.null(x.range)) {
x.var <- seq(min(data[,x],na.rm=T),max(data[,x],na.rm=T),length = 50)
} else {
x.var <- seq(x.range[1],x.range[2],length = 50)
}
} else {
x.var <- names(table(data[,x]))
have.factor <- TRUE
}
if (is.vector(data[,y])) {
if (is.null(y.range)) {
y.var <- seq(min(data[,y],na.rm=T),max(data[,y],na.rm=T),length = 50)
} else {y.var <- seq(y.range[1],y.range[2],length = 50)}
} else {
y.var <- names(table(data[,y]))
if (have.factor) { #check that we don't already have a factor
stop("at least one marginal predictor must be a vector!")
} else {have.factor <- TRUE}
}
pred.frame <- expand.grid(list(x.var,y.var))
names(pred.frame) <- c(x.name,y.name)
pred.rows <- nrow(pred.frame)
#make sure that the factor variable comes first
if (have.factor) {
if (is.factor(pred.frame[,2])) { # swap them about
pred.frame <- pred.frame[,c(2,1)]
x.var <- y.var
}
}
j <- 3
# cycle through the predictors
# if a non-target variable find the mean
for (i in 1:n.preds) {
if (i != x & i != y) {
if (is.vector(data[,i])) {
m <- match(pred.names[i],names(pred.means))
if (is.na(m)) {
pred.frame[,j] <- mean(data[,i],na.rm=T)
} else pred.frame[,j] <- pred.means[m]
}
if (is.factor(data[,i])) {
m <- match(pred.names[i],names(pred.means))
temp.table <- table(data[,i])
if (is.na(m)) {
pred.frame[,j] <- rep(names(temp.table)[2],pred.rows)
} else {
pred.frame[,j] <- pred.means[m]
}
pred.frame[,j] <- factor(pred.frame[,j],levels=names(temp.table))
}
names(pred.frame)[j] <- pred.names[i]
j <- j + 1
}
}
#
# form the prediction
#
#assign("pred.frame", pred.frame, pos=1)
prediction <- gbm::predict.gbm(gbm.object,pred.frame,n.trees = n.trees, type="response")
#assign("prediction", prediction, pos=1, immediate =T)
# model smooth if required
if (smooth == "model") {
pred.glm <- glm(prediction ~ ns(pred.frame[,1], df = 8) * ns(pred.frame[,2], df = 8), data=pred.frame,family=poisson)
prediction <- fitted(pred.glm)
}
# report the maximum value and set up realistic ranges for z
max.pred <- max(prediction)
message("maximum value = ",round(max.pred,2),"\n")
if (is.null(z.range)) {
if (family == "bernoulli") {
z.range <- c(0,1)
} else if (family == "poisson") {
z.range <- c(0,max.pred * 1.1)
} else {
z.min <- min(data[,y],na.rm=T)
z.max <- max(data[,y],na.rm=T)
z.delta <- z.max - z.min
z.range <- c(z.min - (1.1 * z.delta), z.max + (1.1 * z.delta))
}
}
# now process assuming both x and y are vectors
if (have.factor == FALSE) {
# form the matrix
pred.matrix <- matrix(prediction,ncol=50,nrow=50)
# kernel smooth if required
if (smooth == "average") { #apply a 3 x 3 smoothing average
pred.matrix.smooth <- pred.matrix
for (i in 2:49) {
for (j in 2:49) {
pred.matrix.smooth[i,j] <- mean(pred.matrix[c((i-1):(i+1)),c((j-1):(j+1))])
}
}
pred.matrix <- pred.matrix.smooth
}
# mask out values inside hyper-rectangle but outside of sample space
if (mask) {
mask.trees <- gbm.object$gbm.call$best.trees
point.prob <- gbm::predict.gbm(gbm.object[[1]],pred.frame, n.trees = mask.trees, type="response")
point.prob <- matrix(point.prob,ncol=50,nrow=50)
pred.matrix[point.prob < 0.5] <- 0.0
}
#
# and finally plot the result
#
if (!perspective) {
image(x = x.var, y = y.var, z = pred.matrix, zlim = z.range)
} else {
z.facet.center <- (pred.matrix[-1, -1] + pred.matrix[-1, -ncol(pred.matrix)] +
pred.matrix[-nrow(pred.matrix), -1] + pred.matrix[-nrow(pred.matrix), -ncol(pred.matrix)])/4
# Range of the facet center on a 100-scale (number of colors)
z.facet.range<-cut(z.facet.center, 100)
persp(x=x.var, y=y.var, z=pred.matrix, zlim= z.range, # input vars
xlab = x.label, ylab = y.label, zlab = z.label, # labels
theta=theta, phi=phi, r = sqrt(10), d = 3,
col=colors[z.facet.range],# viewing pars
ticktype = ticktype, mgp = c(4,1,0), ...) #
}
}
if (have.factor) {
# we need to plot values of y for each x
factor.list <- names(table(pred.frame[,1]))
n <- 1
#add this bit so z.range still works as expected:
if (is.null(z.range)) {
vert.limits <- c(0, max.pred * 1.1)
} else {
vert.limits <- z.range
}
plot(pred.frame[pred.frame[,1]==factor.list[1],2],
prediction[pred.frame[,1]==factor.list[1]],
type = 'l',
#ylim = c(0, max.pred * 1.1),
ylim = vert.limits,
xlab = y.label,
ylab = z.label, ...)
for (i in 2:length(factor.list)) {
#factor.level in factor.list) {
factor.level <- factor.list[i]
lines(pred.frame[pred.frame[,1]==factor.level,2],
prediction[pred.frame[,1]==factor.level], lty = i)
}
# now draw a legend
if(is.null(leg.coords)){
x.max <- max(pred.frame[,2])
x.min <- min(pred.frame[,2])
x.range <- x.max - x.min
x.pos <- c(x.min + (0.02 * x.range),x.min + (0.3 * x.range))
y.max <- max(prediction)
y.min <- min(prediction)
y.range <- y.max - y.min
y.pos <- c(y.min + (0.8 * y.range),y.min + (0.95 * y.range))
legend(x = x.pos, y = y.pos, factor.list, lty = c(1:length(factor.list)), bty = "n")
} else {
legend(x = leg.coords[1], y = leg.coords[2], factor.list, lty = c(1:length(factor.list)), bty = "n", ncol = 2)
}
}
}