For example, here is a matrix:
[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 0, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 1],
I want to find some rows, whose sum is equal to [4, 3, 2, 1]. The expected answer is rows: {0,1,3,4}. Because:
[1, 0, 0, 0] + [1, 1, 0, 0] + [1, 1, 1, 0] + [1, 1, 1, 1] = [4, 3, 2, 1]
Is there some famous or related algrithoms to resolve the problem?
Thank @sascha and @N. Wouda for the comments. To clarify it, here I provide some more details.
In my problem, the matrix will have about 50 rows and 25 columns. But echo row will just have less than 4 elements (other is zero). And every solution has 8 rows.
If I try all combinations, c(8, 50) is about 0.55 billion times of attempt. Too complex. So I want to find a more effective algrithom.
If you want to make the jump to using a solver, I'd recommend it. This is a pretty straightforward Integer Program. Below solutions use python
, python's pyomo
math programming package to formulate the problem, and COIN OR's cbc
solver for Integer Programs and Mixed Integer Programs, which needs to be installed separately (freeware) available: https://www.coin-or.org/downloading/
Here is the an example with your data followed by an example with 100,000 rows. The example above solves instantly, the 100,000 row example takes about 2 seconds on my machine.
# row selection Integer Program
import pyomo.environ as pyo
data1 = [ [1, 0, 0, 0],
[1, 1, 0, 0],
[1, 0, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 1],]
data_dict = {(i, j): data1[i][j] for i in range(len(data1)) for j in range(len(data1[0]))}
model = pyo.ConcreteModel()
# sets
model.I = pyo.Set(initialize=range(len(data1))) # a simple row index
model.J = pyo.Set(initialize=range(len(data1[0]))) # a simple column index
# parameters
model.matrix = pyo.Param(model.I , model.J, initialize=data_dict) # hold the sparse matrix of values
magic_sum = [4, 3, 2, 1 ]
# variables
model.row_select = pyo.Var(model.I, domain=pyo.Boolean) # row selection variable
# constraints
# ensure the columnar sum is at least the magic sum for all j
def min_sum(model, j):
return sum(model.row_select[i] * model.matrix[(i, j)] for i in model.I) >= magic_sum[j]
model.c1 = pyo.Constraint(model.J, rule=min_sum)
# objective function
# minimze the overage
def objective(model):
delta = 0
for j in model.J:
delta += sum(model.row_select[i] * model.matrix[i, j] for i in model.I) - magic_sum[j]
return delta
model.OBJ = pyo.Objective(rule=objective)
model.pprint() # verify everything
solver = pyo.SolverFactory('cbc') # need to have cbc solver installed
result = solver.solve(model)
result.write() # solver details
model.row_select.display() # output
# ----------------------------------------------------------
# Solver Information
# ----------------------------------------------------------
Solver:
- Status: ok
User time: -1.0
System time: 0.0
Wallclock time: 0.0
Termination condition: optimal
Termination message: Model was solved to optimality (subject to tolerances), and an optimal solution is available.
Statistics:
Branch and bound:
Number of bounded subproblems: 0
Number of created subproblems: 0
Black box:
Number of iterations: 0
Error rc: 0
Time: 0.01792597770690918
# ----------------------------------------------------------
# Solution Information
# ----------------------------------------------------------
Solution:
- number of solutions: 0
number of solutions displayed: 0
row_select : Size=5, Index=I
Key : Lower : Value : Upper : Fixed : Stale : Domain
0 : 0 : 1.0 : 1 : False : False : Boolean
1 : 0 : 1.0 : 1 : False : False : Boolean
2 : 0 : 0.0 : 1 : False : False : Boolean
3 : 0 : 1.0 : 1 : False : False : Boolean
4 : 0 : 1.0 : 1 : False : False : Boolean
# row selection Integer Program stress test
import pyomo.environ as pyo
import numpy as np
# make a large matrix 100,000 x 8
data1 = np.random.randint(0, 1000, size=(100_000, 8))
# inject "the right answer into 3 rows"
data1[42602] = [8, 0, 0, 0, 0, 0, 0, 0 ]
data1[3] = [0, 0, 0, 0, 4, 3, 2, 1 ]
data1[10986] = [0, 7, 6, 5, 0, 0, 0, 0 ]
data_dict = {(i, j): data1[i][j] for i in range(len(data1)) for j in range(len(data1[0]))}
model = pyo.ConcreteModel()
# sets
model.I = pyo.Set(initialize=range(len(data1))) # a simple row index
model.J = pyo.Set(initialize=range(len(data1[0]))) # a simple column index
# parameters
model.matrix = pyo.Param(model.I , model.J, initialize=data_dict) # hold the sparse matrix of values
magic_sum = [8, 7, 6, 5, 4, 3, 2, 1 ]
# variables
model.row_select = pyo.Var(model.I, domain=pyo.Boolean) # row selection variable
# constraints
# ensure the columnar sum is at least the magic sum for all j
def min_sum(model, j):
return sum(model.row_select[i] * model.matrix[(i, j)] for i in model.I) >= magic_sum[j]
model.c1 = pyo.Constraint(model.J, rule=min_sum)
# objective function
# minimze the overage
def objective(model):
delta = 0
for j in model.J:
delta += sum(model.row_select[i] * model.matrix[i, j] for i in model.I) - magic_sum[j]
return delta
model.OBJ = pyo.Objective(rule=objective)
solver = pyo.SolverFactory('cbc')
result = solver.solve(model)
result.write()
print('\n\n======== row selections =======')
for i in model.I:
if model.row_select[i].value > 0:
print (f'row {i} selected')
# ----------------------------------------------------------
# Solver Information
# ----------------------------------------------------------
Solver:
- Status: ok
User time: -1.0
System time: 2.18
Wallclock time: 2.61
Termination condition: optimal
Termination message: Model was solved to optimality (subject to tolerances), and an optimal solution is available.
Statistics:
Branch and bound:
Number of bounded subproblems: 0
Number of created subproblems: 0
Black box:
Number of iterations: 0
Error rc: 0
Time: 2.800779104232788
# ----------------------------------------------------------
# Solution Information
# ----------------------------------------------------------
Solution:
- number of solutions: 0
number of solutions displayed: 0
======== row selections =======
row 3 selected
row 10986 selected
row 42602 selected