pythonlist-comprehensiondictionary-comprehensionset-comprehension

Python : comprehension list, square brackets vs list()


Hello I could not found the difference between using square brackets for comprehension list versus using list()

Is there a performance/ memory allocation difference ?

( same question for set and dict )

input = [1, 2, 3, 4]

B = [a * 2 for a in input if a > 1]

C = list(a * 2 for a in input if a > 1)

B_set = {str(a) for a in input if a > 1}

C_set = set(str(a) for a in input if a > 1)

B_dict = {str(a):a for a in input if a > 1}

C_dict = dict(str(a):b for a,b in input if a > 1) # NOT LEGAL

Thank you for your help


Solution

  • We can check with the -mtimeit.

    $ python -mtimeit "B = [a * 2 for a in list(range(1000)) if a > 1]"
    5000 loops, best of 5: 86.7 usec per loop
    $ python -mtimeit "B = list(a * 2 for a in list(range(1000)) if a > 1)"
    2000 loops, best of 5: 110 usec per loop
    $ python -mtimeit "B = list(a * 2 for a in list(range(1000)) if a > 1)"
    2000 loops, best of 5: 110 usec per loop
    $ python -mtimeit "B = {str(a): a for a in list(range(1000)) if a > 1}"
    1000 loops, best of 5: 273 usec per loop
    $ python -mtimeit "B = set(str(a) for a in list(range(1000)) if a > 1)"
    1000 loops, best of 5: 287 usec per loop
    

    So, as you can see, there is no considerable difference.

    With bigger list, we have:

    $ python -mtimeit "B = [a * 2 for a in list(range(100000)) if a > 1]"
    20 loops, best of 5: 11.1 msec per loop
    $ python -mtimeit "B = list(a * 2 for a in list(range(100000)) if a > 1)"
    20 loops, best of 5: 14.2 msec per loop
    

    Where we see a 3 msec difference, better for the [] case.

    With even bigger number list, we have

    $ python -mtimeit "B = [a * 2 for a in list(range(10000000)) if a > 1]"
    1 loop, best of 5: 1.21 sec per loop
    $ python -mtimeit "B = list(a * 2 for a in list(range(10000000)) if a > 1)"
    1 loop, best of 5: 1.49 sec per loop
    

    where we see a 0.28 sec difference, again [] is faster.