I have the following DataFrame and an arbitrary function
df = pd.DataFrame(
{'grp': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3],
'val': [0.80485036, 0.30698609, 0.33518013, 0.12214516, 0.66355629,
0.71277808, 0.07193942, 0.97128731, 0.46351423, 0.81494857,
0.82267912, 0.33043168, 0.55643, 0.63413976, 0.37998928, 0.54695376,
0.99751999, 0.02726808, 0.2392102 , 0.93278521, 0.41905688]}
)
def myfunc(arr):
return np.product(1+arr) - 1
I calculate myfunc
rolling within groups:
df.groupby('grp')['val'].rolling(3).apply(myfunc)
grp
1 0 NaN
1 NaN
2 2.149576
3 0.958213
4 1.492450
5 2.197331
6 2.054280
7 2.619272
8 2.092553
9 4.236139
10 3.841406
2 11 NaN
3 12 NaN
13 NaN
14 2.509898
15 2.488528
16 3.264265
17 2.174331
18 1.542845
19 1.460438
20 2.398822
That's all good. Now I need to shift back the rolling calc within the group by five periods.
df.groupby('grp')['val'].rolling(3).apply(myfunc).shift(-5)
grp
1 0 2.197331
1 2.054280
2 2.619272
3 2.092553
4 4.236139
5 3.841406
6 NaN
7 NaN
8 NaN
9 2.509898
10 2.488528
2 11 3.264265
3 12 2.174331
13 1.542845
14 1.460438
15 2.398822
16 NaN
17 NaN
18 NaN
19 NaN
20 NaN
Name: val, dtype: float64
What is going on here?! The whole purpose of groupby is to maintain boundaries between groups. How (and why) is pandas not respecting that. It should be:
grp
1 0 2.197331
1 2.054280
2 2.619272
3 2.092553
4 4.236139
5 3.841406
6 NaN
7 NaN
8 NaN
9 NaN
10 NaN
2 11 NaN
3 12 2.174331
13 1.542845
14 1.460438
15 2.398822
16 NaN
17 NaN
18 NaN
19 NaN
20 NaN
Name: val, dtype: float64
This seems like a serious bug in pandas. Am I missing something? How can I make groupby do a groupby?
The problem is, when breaking into pieces, the code
df.groupby('grp')['val'].rolling(3).apply(myfunc).shift(-5)
is equivalent to
tmp = df.groupby('grp')['val'].rolling(3).apply(myfunc)
out = tmp.shift(-5)
Here, tmp
is a normal pd.Series
. And as you can now guess, out
is shifted on a normal series, without any grouping. And this is expected behavior.
To obtain the desired output, you can chain with another groupby:
(df.groupby('grp')['val'].rolling(3).apply(myfunc)
.groupby('grp').shift(-5) # extra groupby here
)
and all should be good.