Right now, as far as I know, all means of conversion from int to binary bit string is for unsigned conversions (bin
, format
, etc.). Is there a way to quickly convert a given integer into its corresponding 2's complement bitstring (using minimal bits)?
For example, I'd want this function f
to output:
f(-4) = '100'
f(5) = '0101'
f(-13) = '10011'
Right now, my implementation is this code here:
def f(x):
"""Convert decimal to two's complement binary string"""
if x < 0:
bs = bin(x)[3:]
bs_pad = zero_pad(bs, roundup(tc_bits(x)))
return bin((int(invert(bs_pad),2) + 1))#negate and add 1
else: #Positive- sign bit 0.
bs = bin(x)[2:]
return "0b" + zero_pad(bs, roundup(tc_bits(x)))
which basically traces each step of the conversion process- zero-padding, negation, adding 1, then converting back to binary (it actually also ensures the bit width is a multiple of four). This was super tedious to write and I'm wondering if Python supports a faster/more code-concise way.
Nothing built in, but this is more concise:
def f(n):
nbits = n.bit_length() + 1
return f"{n & ((1 << nbits) - 1):0{nbits}b}"
Then, e.g.,
>>> f(0)
'0'
>>> f(1)
'01'
>>> f(2)
'010'
>>> f(3)
'011'
>>> f(-1)
'11'
>>> f(-2)
'110'
>>> f(-3)
'101'