pythonflaskcelerycelery-taskflask-cache

Flask Celery task locking


I am using Flask with Celery and I am trying to lock a specific task so that it can only be run one at a time. In the celery docs it gives a example of doing this Celery docs, Ensuring a task is only executed one at a time. This example that was given was for Django however I am using flask I have done my best to convert this to work with Flask however I still see myTask1 which has the lock can be run multiple times.

One thing that is not clear to me is if I am using the cache correctly, I have never used it before so all of it is new to me. One thing from the doc's that is mentioned but not explained is this

Doc Notes:

In order for this to work correctly you need to be using a cache backend where the .add operation is atomic. memcached is known to work well for this purpose.

Im not truly sure what that means, should i be using the cache in conjunction with a database and if so how would I do that? I am using mongodb. In my code I just have this setup for the cache cache = Cache(app, config={'CACHE_TYPE': 'simple'}) as that is what was mentioned in the Flask-Cache doc's Flask-Cache Docs

Another thing that is not clear to me is if there is anything different I need to do as I am calling my myTask1 from within my Flask route task1

Here is an example of my code that I am using.

from flask import (Flask, render_template, flash, redirect,
                   url_for, session, logging, request, g, render_template_string, jsonify)
from flask_caching import Cache
from contextlib import contextmanager
from celery import Celery
from Flask_celery import make_celery
from celery.result import AsyncResult
from celery.utils.log import get_task_logger
from celery.five import monotonic
from flask_pymongo import PyMongo
from hashlib import md5
import pymongo
import time


app = Flask(__name__)

cache = Cache(app, config={'CACHE_TYPE': 'simple'})
app.config['SECRET_KEY']= 'super secret key for me123456789987654321'

######################
# MONGODB SETUP
#####################
app.config['MONGO_HOST'] = 'localhost'
app.config['MONGO_DBNAME'] = 'celery-test-db'
app.config["MONGO_URI"] = 'mongodb://localhost:27017/celery-test-db'


mongo = PyMongo(app)


##############################
# CELERY ARGUMENTS
##############################


app.config['CELERY_BROKER_URL'] = 'amqp://localhost//'
app.config['CELERY_RESULT_BACKEND'] = 'mongodb://localhost:27017/celery-test-db'

app.config['CELERY_RESULT_BACKEND'] = 'mongodb'
app.config['CELERY_MONGODB_BACKEND_SETTINGS'] = {
    "host": "localhost",
    "port": 27017,
    "database": "celery-test-db", 
    "taskmeta_collection": "celery_jobs",
}

app.config['CELERY_TASK_SERIALIZER'] = 'json'


celery = Celery('task',broker='mongodb://localhost:27017/jobs')
celery = make_celery(app)


LOCK_EXPIRE = 60 * 2  # Lock expires in 2 minutes


@contextmanager
def memcache_lock(lock_id, oid):
    timeout_at = monotonic() + LOCK_EXPIRE - 3
    # cache.add fails if the key already exists
    status = cache.add(lock_id, oid, LOCK_EXPIRE)
    try:
        yield status
    finally:
        # memcache delete is very slow, but we have to use it to take
        # advantage of using add() for atomic locking
        if monotonic() < timeout_at and status:
            # don't release the lock if we exceeded the timeout
            # to lessen the chance of releasing an expired lock
            # owned by someone else
            # also don't release the lock if we didn't acquire it
            cache.delete(lock_id)



@celery.task(bind=True, name='app.myTask1')
def myTask1(self):

    self.update_state(state='IN TASK')

    lock_id = self.name

    with memcache_lock(lock_id, self.app.oid) as acquired:
        if acquired:
            # do work if we got the lock
            print('acquired is {}'.format(acquired))
            self.update_state(state='DOING WORK')
            time.sleep(90)
            return 'result'

    # otherwise, the lock was already in use
    raise self.retry(countdown=60)  # redeliver message to the queue, so the work can be done later



@celery.task(bind=True, name='app.myTask2')
def myTask2(self):
    print('you are in task2')
    self.update_state(state='STARTING')
    time.sleep(120)
    print('task2 done')


@app.route('/', methods=['GET', 'POST'])
def index():

    return render_template('index.html')

@app.route('/task1', methods=['GET', 'POST'])
def task1():

    print('running task1')
    result = myTask1.delay()

    # get async task id
    taskResult = AsyncResult(result.task_id)


    # push async taskid into db collection job_task_id
    mongo.db.job_task_id.insert({'taskid': str(taskResult), 'TaskName': 'task1'})

    return render_template('task1.html')


@app.route('/task2', methods=['GET', 'POST'])
def task2():

    print('running task2')
    result = myTask2.delay()

    # get async task id
    taskResult = AsyncResult(result.task_id)

    # push async taskid into db collection job_task_id
    mongo.db.job_task_id.insert({'taskid': str(taskResult), 'TaskName': 'task2'})

    return render_template('task2.html') 


@app.route('/status', methods=['GET', 'POST'])
def status():

    taskid_list = []
    task_state_list = []
    TaskName_list = []

    allAsyncData = mongo.db.job_task_id.find()

    for doc in allAsyncData:
        try:
            taskid_list.append(doc['taskid'])
        except:
            print('error with db conneciton in asyncJobStatus')

        TaskName_list.append(doc['TaskName'])

    # PASS TASK ID TO ASYNC RESULT TO GET TASK RESULT FOR THAT SPECIFIC TASK
    for item in taskid_list:
        try:
            task_state_list.append(myTask1.AsyncResult(item).state)
        except:
            task_state_list.append('UNKNOWN')

    return render_template('status.html', data_list=zip(task_state_list, TaskName_list))

Final Working Code

from flask import (Flask, render_template, flash, redirect,
                   url_for, session, logging, request, g, render_template_string, jsonify)
from flask_caching import Cache
from contextlib import contextmanager
from celery import Celery
from Flask_celery import make_celery
from celery.result import AsyncResult
from celery.utils.log import get_task_logger
from celery.five import monotonic
from flask_pymongo import PyMongo
from hashlib import md5
import pymongo
import time
import redis
from flask_redis import FlaskRedis


app = Flask(__name__)

# ADDING REDIS
redis_store = FlaskRedis(app)

# POINTING CACHE_TYPE TO REDIS
cache = Cache(app, config={'CACHE_TYPE': 'redis'})
app.config['SECRET_KEY']= 'super secret key for me123456789987654321'

######################
# MONGODB SETUP
#####################
app.config['MONGO_HOST'] = 'localhost'
app.config['MONGO_DBNAME'] = 'celery-test-db'
app.config["MONGO_URI"] = 'mongodb://localhost:27017/celery-test-db'


mongo = PyMongo(app)


##############################
# CELERY ARGUMENTS
##############################

# CELERY USING REDIS
app.config['CELERY_BROKER_URL'] = 'redis://localhost:6379/0'
app.config['CELERY_RESULT_BACKEND'] = 'mongodb://localhost:27017/celery-test-db'

app.config['CELERY_RESULT_BACKEND'] = 'mongodb'
app.config['CELERY_MONGODB_BACKEND_SETTINGS'] = {
    "host": "localhost",
    "port": 27017,
    "database": "celery-test-db", 
    "taskmeta_collection": "celery_jobs",
}

app.config['CELERY_TASK_SERIALIZER'] = 'json'


celery = Celery('task',broker='mongodb://localhost:27017/jobs')
celery = make_celery(app)


LOCK_EXPIRE = 60 * 2  # Lock expires in 2 minutes


@contextmanager
def memcache_lock(lock_id, oid):
    timeout_at = monotonic() + LOCK_EXPIRE - 3
    print('in memcache_lock and timeout_at is {}'.format(timeout_at))
    # cache.add fails if the key already exists
    status = cache.add(lock_id, oid, LOCK_EXPIRE)
    try:
        yield status
        print('memcache_lock and status is {}'.format(status))
    finally:
        # memcache delete is very slow, but we have to use it to take
        # advantage of using add() for atomic locking
        if monotonic() < timeout_at and status:
            # don't release the lock if we exceeded the timeout
            # to lessen the chance of releasing an expired lock
            # owned by someone else
            # also don't release the lock if we didn't acquire it
            cache.delete(lock_id)



@celery.task(bind=True, name='app.myTask1')
def myTask1(self):

    self.update_state(state='IN TASK')
    print('dir is {} '.format(dir(self)))

    lock_id = self.name
    print('lock_id is {}'.format(lock_id))

    with memcache_lock(lock_id, self.app.oid) as acquired:
        print('in memcache_lock and lock_id is {} self.app.oid is {} and acquired is {}'.format(lock_id, self.app.oid, acquired))
        if acquired:
            # do work if we got the lock
            print('acquired is {}'.format(acquired))
            self.update_state(state='DOING WORK')
            time.sleep(90)
            return 'result'

    # otherwise, the lock was already in use
    raise self.retry(countdown=60)  # redeliver message to the queue, so the work can be done later



@celery.task(bind=True, name='app.myTask2')
def myTask2(self):
    print('you are in task2')
    self.update_state(state='STARTING')
    time.sleep(120)
    print('task2 done')


@app.route('/', methods=['GET', 'POST'])
def index():

    return render_template('index.html')

@app.route('/task1', methods=['GET', 'POST'])
def task1():

    print('running task1')
    result = myTask1.delay()

    # get async task id
    taskResult = AsyncResult(result.task_id)


    # push async taskid into db collection job_task_id
    mongo.db.job_task_id.insert({'taskid': str(taskResult), 'TaskName': 'myTask1'})

    return render_template('task1.html')


@app.route('/task2', methods=['GET', 'POST'])
def task2():

    print('running task2')
    result = myTask2.delay()

    # get async task id
    taskResult = AsyncResult(result.task_id)

    # push async taskid into db collection job_task_id
    mongo.db.job_task_id.insert({'taskid': str(taskResult), 'TaskName': 'task2'})

    return render_template('task2.html')

@app.route('/status', methods=['GET', 'POST'])
def status():

    taskid_list = []
    task_state_list = []
    TaskName_list = []

    allAsyncData = mongo.db.job_task_id.find()

    for doc in allAsyncData:
        try:
            taskid_list.append(doc['taskid'])
        except:
            print('error with db conneciton in asyncJobStatus')

        TaskName_list.append(doc['TaskName'])

    # PASS TASK ID TO ASYNC RESULT TO GET TASK RESULT FOR THAT SPECIFIC TASK
    for item in taskid_list:
        try:
            task_state_list.append(myTask1.AsyncResult(item).state)
        except:
            task_state_list.append('UNKNOWN')

    return render_template('status.html', data_list=zip(task_state_list, TaskName_list))


if __name__ == '__main__':
    app.secret_key = 'super secret key for me123456789987654321'
    app.run(port=1234, host='localhost')

Here is also a screen shot you can see that I ran myTask1 two times and myTask2 a single time. Now I have the expected behavior for myTask1. Now myTask1 will be run by a single worker if another worker attempt to pick it up it will just keep retrying based on whatever i define.

Flower Dashboard


Solution

  • I also found this to be a surprisingly hard problem. Inspired mainly by Sebastian's work on implementing a distributed locking algorithm in redis I wrote up a decorator function.

    A key point to bear in mind about this approach is that we lock tasks at the level of the task's argument space, e.g. we allow multiple game update/process order tasks to run concurrently, but only one per game. That's what argument_signature achieves in the code below. You can see documentation on how we use this in our stack at this gist:

    import base64
    from contextlib import contextmanager
    import json
    import pickle as pkl
    import uuid
    
    from backend.config import Config
    from redis import StrictRedis
    from redis_cache import RedisCache
    from redlock import Redlock
    
    rds = StrictRedis(Config.REDIS_HOST, decode_responses=True, charset="utf-8")
    rds_cache = StrictRedis(Config.REDIS_HOST, decode_responses=False, charset="utf-8")
    redis_cache = RedisCache(redis_client=rds_cache, prefix="rc", serializer=pkl.dumps, deserializer=pkl.loads)
    dlm = Redlock([{"host": Config.REDIS_HOST}])
    
    TASK_LOCK_MSG = "Task execution skipped -- another task already has the lock"
    DEFAULT_ASSET_EXPIRATION = 8 * 24 * 60 * 60  # by default keep cached values around for 8 days
    DEFAULT_CACHE_EXPIRATION = 1 * 24 * 60 * 60  # we can keep cached values around for a shorter period of time
    
    REMOVE_ONLY_IF_OWNER_SCRIPT = """
    if redis.call("get",KEYS[1]) == ARGV[1] then
        return redis.call("del",KEYS[1])
    else
        return 0
    end
    """
    
    
    @contextmanager
    def redis_lock(lock_name, expires=60):
        # https://breadcrumbscollector.tech/what-is-celery-beat-and-how-to-use-it-part-2-patterns-and-caveats/
        random_value = str(uuid.uuid4())
        lock_acquired = bool(
            rds.set(lock_name, random_value, ex=expires, nx=True)
        )
        yield lock_acquired
        if lock_acquired:
            rds.eval(REMOVE_ONLY_IF_OWNER_SCRIPT, 1, lock_name, random_value)
    
    
    def argument_signature(*args, **kwargs):
        arg_list = [str(x) for x in args]
        kwarg_list = [f"{str(k)}:{str(v)}" for k, v in kwargs.items()]
        return base64.b64encode(f"{'_'.join(arg_list)}-{'_'.join(kwarg_list)}".encode()).decode()
    
    
    def task_lock(func=None, main_key="", timeout=None):
        def _dec(run_func):
            def _caller(*args, **kwargs):
                with redis_lock(f"{main_key}_{argument_signature(*args, **kwargs)}", timeout) as acquired:
                    if not acquired:
                        return TASK_LOCK_MSG
                    return run_func(*args, **kwargs)
            return _caller
        return _dec(func) if func is not None else _dec
    

    Implementation in our task definitions file:

    @celery.task(name="async_test_task_lock")
    @task_lock(main_key="async_test_task_lock", timeout=UPDATE_GAME_DATA_TIMEOUT)
    def async_test_task_lock(game_id):
        print(f"processing game_id {game_id}")
        time.sleep(TASK_LOCK_TEST_SLEEP)
    

    How we test against a local celery cluster:

    from backend.tasks.definitions import async_test_task_lock, TASK_LOCK_TEST_SLEEP
    from backend.tasks.redis_handlers import rds, TASK_LOCK_MSG
    class TestTaskLocking(TestCase):
        def test_task_locking(self):
            rds.flushall()
            res1 = async_test_task_lock.delay(3)
            res2 = async_test_task_lock.delay(5)
            self.assertFalse(res1.ready())
            self.assertFalse(res2.ready())
            res3 = async_test_task_lock.delay(5)
            res4 = async_test_task_lock.delay(5)
            self.assertEqual(res3.get(), TASK_LOCK_MSG)
            self.assertEqual(res4.get(), TASK_LOCK_MSG)
            time.sleep(TASK_LOCK_TEST_SLEEP)
            res5 = async_test_task_lock.delay(3)
            self.assertFalse(res5.ready())
    

    (as a goodie there's also a quick example of how to setup a redis_cache)