After much searching, I found what I believe to be the closest answer to my problem is on Stack Overflow (SO) at Fortran interface to call a C function that return a pointer, (posted nearly 10 years ago!)
I quote this because using that example keeps the code simple and still illustrates my problem.
I want to return an array that has been created/memory allocated in C++ and be able to analyse the answer in Fortran, because that is where the bulk of the code for this application lies. My application goes off into C++ to produce the integer array answer and returns it to the Fortran program via the C interface. The original SO example used a single double precision variable as the return. I’ve changed it to integer because that is what I will be dealing with in my application. The example code (as changed) works.
I have highlighted with comments the changes that I have tried to make to return an array pointer, but I’ve run out of ideas. (I could say, “Oh for the bad old days when I could just equivalence an integer to an iarray(1) and go beyond the size of the array”, but I won’t. It’s good to have coding protections, but sometimes it gets frustrating.)
I am using Visual Studio 2017 and Intel Fortran parallel_studio_xe_2019_update5_composer.
My modified example of the original SO code:
! ps_test_pointers.f90
program foo
use, intrinsic :: iso_c_binding, only : c_ptr, &
c_f_pointer, &
c_int
implicit none
type(c_ptr) :: c_p!(:) ! <-------
integer(c_int), pointer :: f_p!(:) ! <-------
interface
function foofunc() bind(c)
import :: c_ptr
implicit none
type(c_ptr) :: foofunc!(:) ! <-------
end function foofunc
end interface
c_p = foofunc()
call c_f_pointer(c_p, f_p)
print *, f_p
end program foo
// ps_test_pointersC.cpp : 'Subroutine' only.
extern "C" {
int bar[3] = { 2, 3, 4 };
int *foofunc() {
return bar;
}
}
As I said above, the code works, in the sense that it prints out the first element of the array (‘2’).
If I add the ‘(:)’ to the definition of f_p, the code compiles without error, but when I run it, the program fails with the run-time error: “forrtl: severe (408): fort: (7): Attempt to use pointer F_P when it is not associated with a target” at the line “call c_f_pointer(c_p, f_p)”.
I have tried declaring c_p as an array (“c_p(:)”), but I get the same error in the same place.
I have also tried calling c_p as an argument to a subroutine – still only using integers:
! ps_test_pointers.f90
program foo
use, intrinsic :: iso_c_binding, only : c_ptr, &
c_f_pointer, &
c_int
implicit none
type(c_ptr) :: c_p!(:) ! <-------
integer(c_int), pointer :: f_p!(:) ! <-------
interface
subroutine foofunc(c_p) bind(c)
import :: c_ptr
implicit none
type(c_ptr) :: c_p!(:) ! <-------
end subroutine foofunc
end interface
call foofunc(c_p)
call c_f_pointer(c_p, f_p)
print *, f_p
end program foo
// ps_test_pointersC.cpp : 'Subroutine' only.
extern "C" {
int bar[3] = { 2, 3, 4 };
void foofunc(int *rtn) {
rtn = bar;
}
}
but the created pointer in the C function never gets assigned to c_p on return (hence f_p is never defined).
Reading around the problem, I hope I’m not at the bleeding edge of compiler implementation and have exposed a problem between restrictions tightening but not coping with all the use cases!
Is there a solution to this?
RE the subroutine approach, I think we probably need to declare c_p
as int**
(rather than int*
) on the C/C++ side to get the address of bar
via argument association (rather than function return value). So something like...
main.f90:
program foo
use, intrinsic :: iso_c_binding, only : c_ptr, &
c_f_pointer, &
c_int
implicit none
type(c_ptr) :: c_p
integer(c_int), pointer :: f_p(:)
integer(c_int) :: nsize
interface
subroutine foosub( c_p, nsize ) bind(c)
import :: c_ptr, c_int
implicit none
type(c_ptr) :: c_p !<-- sends the pointer to c_p
integer(c_int) :: nsize !<-- sends the pointer to nsize
end subroutine
end interface
call foosub( c_p, nsize )
call c_f_pointer( c_p, f_p, [nsize] )
print *, "nsize = ", nsize
print *, "f_p(:) = ", f_p(:)
end program
sub.cpp:
extern "C" {
int bar[3] = { 2, 3, 4 };
void foosub( int** rtn, int* nsize ) {
*rtn = bar;
*nsize = sizeof(bar) / sizeof(int);
}
}
Compile & run:
$ g++-10 -c sub.cpp
$ gfortran-10 -c main.f90
$ g++-10 main.o sub.o -lgfortran
$ ./a.out
nsize = 3
f_p(:) = 2 3 4