I have a dataframe looks like this:
df_schema = StructType([StructField("date", StringType(), True),\
StructField("col1", FloatType(), True),\
StructField("col2", FloatType(), True)])
df_data = [('2020-08-01',0.09,0.8),\
('2020-08-02',0.0483,0.8)]
rdd = sc.parallelize(df_data)
df = sqlContext.createDataFrame(df_data, df_schema)
df = df.withColumn("date",to_date("date", 'yyyy-MM-dd'))
df.show()
+----------+------+----+
| date| col1|col2|
+----------+------+----+
|2020-08-01| 0.09| 0.8|
|2020-08-02|0.0483| 0.8|
+----------+------+----+
And I want to calculate Poisson CDF using col1 and col2.
we can easily use from scipy.stats import poisson in pandas dataframe but I don't know how to deal with pyspark.
prob = poisson.cdf(x, mu) where x= col1 , and mu = col2 in our case.
ATTEMPT 1 :
from scipy.stats import poisson
from pyspark.sql.functions import udf,col
def poisson_calc(a,b):
return poisson.cdf(a,b,axis=1)
poisson_calc = udf(poisson_calc, FloatType())
df_new = df.select(
poisson_calc(col('col1'),col('col2')).alias("want") )
df_new.show()
Got me an error :TypeError: _parse_args() got an unexpected keyword argument 'axis'
I see some issues with your attempt.
udf
the same as the underlying function. Surprisingly this actually isn't a problem per se but I would avoid it.axis
keyword argument to scipy.stats.poisson.cdf
float
or you'll run into this errorFixing that all up, the following should work:
from scipy.stats import poisson
from pyspark.sql.functions import udf,col
def poisson_calc(a,b):
return float(poisson.cdf(a,b))
poisson_calc_udf = udf(poisson_calc, FloatType())
df_new = df.select(
poisson_calc_udf(col('col1'),col('col2')).alias("want")
)
df_new.show()
#+----------+
#| want|
#+----------+
#|0.44932896|
#|0.44932896|
#+----------+