Context:
I am using a deferred rendering setup, where in the first stage I have two FBO's: one is the GBuffer, for storing the normals, albedo, and material information for all visible fragments. This FBO has a 32-bit depth texture. This gets drawn into in a geometry pass, before any lighting is calculated.
The second FBO is color-only, and starts off black, but accumulates lighting over several passes, from lighting shaders that sample from the GBuffer and write to the color-only buffer using additive blending.
The problem is, I would really like to utilize early depth testing in order to have my lighting ONLY calculate for fragments that contain actual geometry (Not just sky). The best way I can think of to do this is to use depth testing to fail any pixels that have a depth of one in the case of sunlight, or to fail any pixels that lie behind the sphere of influence for point lights. However, I don't think I can bind this depth texture to my color FBO, since I also sample from it inside the lighting shader to calculate the fragments position in world-space.
So my question is: Is there a way to use the same depth texture for both the early depth test, and for sampling inside the shader? Or if not, is there some other (reasonably performant) way of rejecting pixels that don't have geometry in them? I will not be writing to this depth texture at all in my lighting pass.
I only have to target modern graphics hardware on PC's (So I can use any common extensions, or openGL 4.6 features).
There are rules in OpenGL about reading from data in a shader that's also being updated due to a framebuffer operation. Those rules used to be quite strict. Indeed, pre-GL 4.4, the rules were so strict that what you're trying to do was actually undefined behavior. That is, if an image from a texture was attached to the rendering FBO, and you took a sample from that texture in a way such that it was at all possible to be reading from the attached image, you got undefined behavior. Never mind if your write mask meant that no writing happened; it was UB.
Fortunately, it's well-defined now. You only get UB if you're doing an actual write, not merely because you have an image attached to the FBO. And by "now," I mean basically any hardware made in the last 10 years. While ARB_texture_barrier and GL 4.5 are fairly recent, their predecessor NV_texture_barrier is actually quite old. And despite being an NVIDIA extension by name, it was so widely implemented that it is even available on MacOS implementations.