optimizationtraveling-salesmanor-tools

OR-Tools VRP Solver Under-performing


I am trying to test or-tools routing solver to solve the basic TSP problem, but I have not been able to get it properly working. I have a distance matrix and a bunch of greedy solutions already generated before the problem is sent over to the routing solver. As an example, I have set up a problem using the sample python code from this website shared at the bottom.

In the example, I have 10 cities with an asymmetric distance matrix. The best greedy solution (closest-first starting from different cities) is stored as an initial solution in data. I have two functions: solve_from_initial_route() and solve_from_scratch() that solve the same problem with or without the information of an initial solution and also yield the same result. The solver exhibits some surprising behavior here:

It is possible that I have not set all options correctly or am missing something in my code. I would appreciate any help in making the solver work as expected.

Thanks!

!pip install ortools
from __future__ import print_function
from ortools.constraint_solver import pywrapcp
from ortools.constraint_solver import routing_enums_pb2

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data['distance_matrix'] = [
        [0, 227543, 133934, 200896, 106495, 163222, 75896, 139494, 46460, 102942],
        [135873, 0, 15673, 174874, 80474, 197318, 109993, 232377, 139343, 46665],
        [229482, 15673, 0, 88692, 183092, 125214, 214714, 153718, 247723, 140274],
        [108503, 174151, 80542, 0, 15674, 169948, 82622, 205007, 111973, 49550],
        [195308, 94193, 167348, 21174, 0, 105716, 169428, 134221, 198779, 136356],
        [77835, 203602, 109992, 176954, 82554, 0, 15660, 174340, 81306, 79000],
        [172835, 119784, 213500, 94785, 189185, 21172, 0, 96019, 190024, 174000],
        [48413, 232967, 139358, 206320, 111919, 168647, 81321, 0, 15662, 108366],
        [141422, 153773, 247490, 128774, 204928, 101504, 174329, 15662, 0, 201374],
        [104492, 139205, 45595, 143494, 49093, 165938, 78612, 200997, 107963, 0]
    ]
    data['initial_routes'] = [
        [8, 7, 6, 5, 4, 3, 2, 1]
    ]
    data['num_vehicles'] = 1
    data['start_idx'] = [0]
    data['end_idx'] = [9]
    return data
def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    max_route_distance = 0
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
        route_distance = 0
        while not routing.IsEnd(index):
            plan_output += ' {} -> '.format(manager.IndexToNode(index))
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id)
        plan_output += '{}\n'.format(manager.IndexToNode(index))
        plan_output += 'Distance of the route: {}m\n'.format(route_distance)
        print(plan_output)
        max_route_distance = max(route_distance, max_route_distance)
    print('Maximum of the route distances: {}m'.format(max_route_distance))
def solve_from_initial_route():
    """Solve the CVRP problem."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], data['start_idx'],
                                           data['end_idx'])

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)


    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    initial_solution = routing.ReadAssignmentFromRoutes(data['initial_routes'],True)
    print('Initial solution:')
    print_solution(data, manager, routing, initial_solution)

    # Set default search parameters.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
    search_parameters.local_search_metaheuristic = (routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
    search_parameters.time_limit.seconds = 2
    search_parameters.lns_time_limit.seconds = 1
    search_parameters.solution_limit = 15000
    search_parameters.log_search = True

    # Solve the problem.
    solution = routing.SolveFromAssignmentWithParameters(initial_solution, search_parameters)

    # Print solution on console.
    if solution:
        print('Solution after search:')
        print_solution(data, manager, routing, solution)
def solve_from_scratch():
    """Solve the CVRP problem."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], data['start_idx'],
                                           data['end_idx'])

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Set default search parameters.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
    search_parameters.local_search_metaheuristic = (routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
    search_parameters.time_limit.seconds = 2
    search_parameters.lns_time_limit.seconds = 1
    search_parameters.solution_limit = 150000
    search_parameters.log_search = True

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print('Solution after search:')
        print_solution(data, manager, routing, solution)
if __name__ == '__main__':
    #solve_from_initial_route()
    solve_from_scratch()

Solution

  • If I run your code, it prints

    Solution after search:
    Route for vehicle 0:
     0 ->  8 ->  7 ->  6 ->  5 ->  4 ->  3 ->  2 ->  1 -> 9
    Distance of the route: 411223m
    

    This is the optimal path from 0 to 9 using all the nodes (I checked that using the tsp_sat code). And it is found in less than 1 ms.

    Now, on the log part,

    Solution #5265 (783010, objective minimum = 411223, objective maximum = 1103173, time = 1998 ms, branches = 26227, failures = 14386, depth = 33, OrOpt<3>, neighbors = 351904, filtered neighbors = 5265, accepted neighbors = 5265, memory used = 35.63 MB, limit = 99%)
    

    GLS penalizes the cost function, so the actual value 783010 is not a true distance, but a penalized distance.

    Now, solve_from_initial_route() hits a known bug

    Here is the correct solve code

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], 
                                           data['start_idx'],
                                           data['end_idx'])
    
    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)
    
    
    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]
    
    transit_callback_index = routing.RegisterTransitCallback(distance_callback)
    
    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
    
    # Set default search parameters.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
    search_parameters.local_search_metaheuristic = (routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
    search_parameters.time_limit.seconds = 1
    search_parameters.lns_time_limit.seconds = 1
    search_parameters.solution_limit = 15000
    search_parameters.log_search = True
    
    routing.CloseModelWithParameters(search_parameters)
    
    initial_solution = routing.ReadAssignmentFromRoutes(data['initial_routes'],
                                                        True)
    print('Initial solution:')
    print_solution(data, manager, routing, initial_solution)
    
    
    # Solve the problem.
    solution =  routing.SolveFromAssignmentWithParameters(initial_solution, search_parameters)
    

    This initializes the parameters correctly, and the search finds the optimal solution.