Within my app, I have a MTLBuffer
which is being instantiated using a generic type. In one particular case, the buffer will hold values as related to particles in a point cloud, and is defined as such;
struct ParticleUniforms {
simd_float3 position;
simd_float3 color;
float confidence;
};
I am instantiating my MTLBuffer
like so;
guard let buffer = device.makeBuffer(length: MemoryLayout<Element>.stride * count, options: options) else {
fatalError("Failed to create MTLBuffer.")
}
Where I am struggling, however, is to understand how to read the contents of the buffer. More-so, I am looking to copy one element of each item in the buffer to an array on the CPU, which I will use at a later time.
Effectively, the buffer holds a collection of ParticleUniforms
, and I would like to access the position
value of each item, saving that position to a separate array.
All of the examples I've seen here on Stack Overflow seem to show the MTLBuffer
as holding a collection of Floats, though I've not seen any that use a generic type.
It seems what you are looking to achieve can only be done with C structures which hold each member in a contiguous block (arrays of C structs are not necessarily contiguous, but MemoryLayout<Type>.stride
will account for any potential padding). Swift structure properties may not be contiguous, so the below method for accessing member values would not work in a practical manner. Unfortunately, when working with void*
you need to know what the data describes, which isn't particularly suited for Swift generic types. However, I will offer a potential solution.
C file:
#ifndef Test_h
#define Test_h
#include <simd/simd.h>
typedef struct {
vector_float3 testA;
vector_float3 testB;
} CustomC;
#endif /* Test_h */
Swift file (bridging header assumed)
import Metal
// MARK: Convenience
typealias MTLCStructMemberFormat = MTLVertexFormat
@_functionBuilder
struct ArrayLayout { static func buildBlock<T>(_ arr: T...) -> [T] { arr } }
extension MTLCStructMemberFormat {
var stride: Int {
switch self {
case .float2: return MemoryLayout<simd_float2>.stride
case .float3: return MemoryLayout<simd_float3>.stride
default: fatalError("Case unaccounted for")
}
}
}
// MARK: Custom Protocol
protocol CMetalStruct {
/// Returns the type of the `ith` member
static var memoryLayouts: [MTLCStructMemberFormat] { get }
}
// Custom Allocator
class CustomBufferAllocator<Element> where Element: CMetalStruct {
var buffer: MTLBuffer!
var count: Int
init(bytes: UnsafeMutableRawPointer, count: Int, options: MTLResourceOptions = []) {
guard let buffer = device.makeBuffer(bytes: bytes, length: count * MemoryLayout<Element>.stride, options: options) else {
fatalError("Failed to create MTLBuffer.")
}
self.buffer = buffer
self.count = count
}
func readBufferContents<T>(element_position_in_array n: Int, memberID: Int, expectedType type: T.Type = T.self)
-> T {
let pointerAddition = n * MemoryLayout<Element>.stride
let valueToIncrement = Element.memoryLayouts[0..<memberID].reduce(0) { $0 + $1.stride }
return buffer.contents().advanced(by: pointerAddition + valueToIncrement).bindMemory(to: T.self, capacity: 1).pointee
}
func extractMembers<T>(memberID: Int, expectedType type: T.Type = T.self) -> [T] {
var array: [T] = []
for n in 0..<count {
let pointerAddition = n * MemoryLayout<Element>.stride
let valueToIncrement = Element.memoryLayouts[0..<memberID].reduce(0) { $0 + $1.stride }
let contents = buffer.contents().advanced(by: pointerAddition + valueToIncrement).bindMemory(to: T.self, capacity: 1).pointee
array.append(contents)
}
return array
}
}
// Example
// First extend the custom struct to conform to out type
extension CustomC: CMetalStruct {
@ArrayLayout static var memoryLayouts: [MTLCStructMemberFormat] {
MTLCStructMemberFormat.float3
MTLCStructMemberFormat.float3
}
}
let device = MTLCreateSystemDefaultDevice()!
var CTypes = [CustomC(testA: .init(59, 99, 0), testB: .init(102, 111, 52)), CustomC(testA: .init(10, 11, 5), testB: .one), CustomC(testA: .zero, testB: .init(5, 5, 5))]
let allocator = CustomBufferAllocator<CustomC>(bytes: &CTypes, count: 3)
let value = allocator.readBufferContents(element_position_in_array: 1, memberID: 0, expectedType: simd_float3.self)
print(value)
// Prints SIMD3<Float>(10.0, 11.0, 5.0)
let group = allocator.extractMembers(memberID: 1, expectedType: simd_float3.self)
print(group)
// Prints [SIMD3<Float>(102.0, 111.0, 52.0), SIMD3<Float>(1.0, 1.0, 1.0), SIMD3<Float>(5.0, 5.0, 5.0)]
This is similar to a MTLVertexDescriptor
, except the memory is accessed manually and not via the [[stage_in]]
attribute and the argument table passed to each instance of a vertex of fragment shader. You could even extend the allocator to accept a string parameter with the name of the property and hold some dictionary which maps to member IDs.