I have created an Estimator from a TF Slim Resnet V2 checkpoint and tested it to make predictions. The main thing of what I did is basically similar to a normal Estimator together with assign_from_checkpoint_fn:
def model_fn(features, labels, mode, params):
...
slim.assign_from_checkpoint_fn(os.path.join(checkpoint_dir, 'resnet_v2_50.ckpt'), slim.get_model_variables('resnet_v2')
...
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {
'class_ids': predicted_classes[:, tf.newaxis],
'probabilities': tf.nn.softmax(logits),
'logits': logits,
}
return tf.estimator.EstimatorSpec(mode, predictions=predictions)
To export the estimator as a SavedModel, I made a serving_input_fn as follows:
def image_preprocess(image_buffer):
image = tf.image.decode_jpeg(image_buffer, channels=3)
image_preprocessing_fn = preprocessing_factory.get_preprocessing('inception', is_training=False)
image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size)
return image
def serving_input_fn():
input_ph = tf.placeholder(tf.string, shape=[None], name='image_binary')
image_tensors = image_preprocess(input_ph)
return tf.estimator.export.ServingInputReceiver(image_tensors, input_ph)
In the main function, I use export_saved_model to try to export Estimator to SavedModel format:
def main():
...
classifier = tf.estimator.Estimator(model_fn=model_fn)
classifier.export_saved_model(dir_path, serving_input_fn)
However, when I try to run the codes, it says "Couldn't find trained model at /tmp/tmpn3spty2z". From what I understand, this export_saved_model tries to find a trained Estimator model to export to SavedModel. However, I would like to know if there are any ways I can restore the pretrained checkpoint into an Estimator and export the Estimator to a SavedModel without any further training?
I have solved my problem. To export TF Slim Resnet checkpoint with TF 1.14 to SavedModel, warm start can be used together with export_savedmodel as follows:
config = tf.estimator.RunConfig(save_summary_steps = None, save_checkpoints_secs = None)
warm_start = tf.estimator.WarmStartSettings(checkpoint_dir, checkpoint_name)
classifier = tf.estimator.Estimator(model_fn=model_fn, warm_start_from = warm_start, config = config)
classifier.export_savedmodel(export_dir_base = FLAGS.output_dir, serving_input_receiver_fn = serving_input_fn)