The puzzle
I tried to solve puzzle with the below program. It is a 4x4 cross math puzzle. Is there any way to solve quickly
def puzzleTwo (a):
if(a[0] + a[1] - a[2] + a[3] == 19):
#print ("1 equation Success")
if(a[4] - a[5] - a[6] - a[7] == -31):
#print ("2 equation Success")
if(a[8] - a[9] / a[10] + a[11] == 8):
#print ("3 equation Success")
if(a[12] - a[13] / a[14] + a[15] == 1):
#print ("4 equation Success")
if(a[0] + a[4] + a[8] + a[12] == 23):
#print ("5 equation Success")
if(a[1] - a[5] + a[9] - a[13] == -3):
#print ("6 equation Success")
if(a[2] - a[6] / a[10] + a[14] == 5):
#print ("7 equation Success")
if(a[3] + a[7] - a[11] + a[15] == 22):
print (a)
return
from sympy.utilities.iterables import multiset_permutations
import numpy as np
a = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16])
for p in multiset_permutations(a):
puzzleTwo(p)
The following code uses backtracking algorithm to find a solution in ~3 minutes on Windows 10 PC with i7 CPU 920 @ 2.67 MHz
Code
def condition(a):
' Apply conditions individually to allow immediate backtracking when a condition is not met '
if len(a)==4:
return (a[0] + a[1] - a[2] + a[3]) == 19
elif len(a) == 8:
return (a[4] - a[5] - a[6] - a[7]) == -31
elif len(a) == 11:
return (a[6] % a[10]) == 0 and (a[9] % a[10]) == 0
elif len(a)==12:
return (a[8] - a[9] // a[10] + a[11]) == 8
elif len(a) == 13:
return (a[0] + a[4] + a[8] + a[12]) == 23
elif len(a) == 14:
return (a[1] - a[5] + a[9] - a[13]) == -3
elif len(a) == 15:
return (a[2] - a[6] // a[10] + a[14]) == 5 and (a[13] % a[14]) == 0
elif len(a) == 16:
return (a[3] + a[7] - a[11] + a[15]) == 22 and (a[12] - a[13] // a[14] + a[15]) == 1
elif len(a) > 16:
return False # array exceeds max length
else:
return True # not one of the lengths to try conditions
def solve(answer = None):
' Uses backtracking to find solve 4x4 math grid problem '
if answer is None:
answer = ()
if condition(answer):
# satisfies conditions so far
if len(answer) == 16:
# satisfies all conditions
yield answer
else:
# Expand on solution since satisfies conditions so far
for i in range(1, 17):
# Try adding one of the numbers 1 to 17 to current answer
yield from solve(answer + (i,))
from time import time
tstart = time()
print(f'Solution: {next(solve(), None))}') # get first solution
# use list(solve()) to get all solutions
print(f'Elapsed time {time()-tstart}')
Output
Solution: (1, 6, 1, 13, 6, 14, 14, 9, 15, 16, 2, 1, 1, 11, 11, 1)
Elapsed time 189.32917761802673
Explanation
Trying all multiset_permutations of numbers of length 16 is infeasible since there are too many (i.e. 16^16 = 2^64 ~ 18e18).
Idea is to create arrays of increasing size (i.e. 0 to 16 length), but abort early if the array will not satisfy conditions (i.e. backtracking).
To be able to abort early (i.e. backtracking) we: