I am trying to write a program in Haskell that returns 'e
' (Euler's number) to a given decimal place. Here is my code so far:
factorial 0 = 1
factorial n = n * factorial (n - 1)
calculateE a
| a == 0 = 1
| otherwise = nextLevel
where nextLevel = (1 / (factorial a)) + calculateE (a-1)
Whenever I call calculateE
I only get back 16 decimal places. Is this a limitation of Haskell/My computer? Is there a way to get back any number of decimal places?
This code already works to arbitrary precision. You just need to use an arbitrary precision type and not the standard Float
/Double
. Haskell's standard library has Rational
for this purpose, which represents rational numbers as pairs of integers.
ghci> calculateE 100 :: Rational
4299778907798767752801199122242037634663518280784714275131782813346597523870956720660008227544949996496057758175050906671347686438130409774741771022426508339 % 1581800261761765299689817607733333906622304546853925787603270574495213559207286705236295999595873191292435557980122436580528562896896000000000000000000000000
The issue now is getting a sequence of digits out of it. I'm not aware of anything in the standard library that does it, so here's a stupid simple (might still be buggy!) implementation:
import Data.List(unfoldr)
import Data.List.NonEmpty(NonEmpty((:|)))
import Data.Ratio
-- first element is integral part (+ sign), rest are positive and < 10 and are digits
-- after the decimal point (for negative numbers, these digits should be seen as having negative value)
longDivision :: Integral a => Ratio a -> NonEmpty a
longDivision x = hi :| unfoldr go (abs lo)
where (hi, lo) = numerator x `quotRem` denominator x
go 0 = Nothing
go lo = Just $ (lo * 10) `quotRem` denominator x
printDigits :: Show a => NonEmpty a -> String
printDigits (x :| xs) = show x ++ "." ++ concatMap show xs
So
ghci> take 100 $ printDigits $ longDivision $ calculateE 100
"2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642"
This approximation actually seems to be good to ~160 digits after the decimal point.