rjagsrjags

Why does rjags give Dimension mismatch taking subset of y error here?


I have written this model but rjags gives dimension mismatch error; What's happening?

Error in jags.model(textConnection(model1), data = jags_data, n.chains = n_chains, : RUNTIME ERROR: Compilation error on line 8. Dimension mismatch taking subset of y

library(rjags)
model1 <- "model {
        C <- 10000
        for (j in 1:nobs){
            zeros[j] ~ dpois(phi[j])
            
            phi[j] <- -log(L[j]) + C
            
            L[j] <- add[j]*(lambda[j]^y[j])*(1-lambda[j])^(1-y[j])
      
            add[j] = ifelse(lambda[j] == 0.5, 2, aux[j])
            aux[j] = 2*arctanh(1 - 2*lambda[j] + 10^(-323))/(1 - 2*lambda[j] + 10^(-323))
            
            logit(lambda[j]) <- inprod(X[j, ], beta)
        }
        beta[1] ~ dnorm(0,1)
        beta[2] ~ dgamma(1,1)
}"


n_chains = 1
n_adapt = 5000
n_iter = 10000
n_thin = 1
n_burnin = 5000

# generate data
n = 100

Ffun = plogis
design_mat = cbind(1, matrix(seq(0,1,by = 0.2), ncol=1))

gen_data = function(n, beta) {
X = design_mat[sample(nrow(design_mat), size = n, replace = T), ]
lambda = Ffun(X %*% beta)
y = rcbern(n,lambda)
idx = is.nan(y)
y[idx] = runif(length(idx))
list(X = X, y = y)
 }

rcbern = function(n,lam){
x = runif(n)
y = log((x*(2*lam-1) - (lam-1))/(1-lam))/log(lam/(1-lam))
return(y)
}

 beta = as.matrix(c(-3, 5))
jags_data = gen_data(n, beta)
jags_data$nobs = n
jg_model <- jags.model(textConnection(model1),
                   data = jags_data,
                   n.chains = n_chains,
                   n.adapt = n_adapt)
update(jg_model, n.iter = n_burnin)
result <- coda.samples(jg_model, 
                   variable.names = c("beta"),
                   n.iter = n_iter, 
                   thin = n_thin,
                   n.chains = n_chains)

beta_est = list(apply(result[[1]],2,median))

Solution

  • As suggested by @user20650 the issue is that you are indexing y as vector and your functions are generating as a matrix. Try this code with a slight change in gen_data():

    library(rjags)
    model1 <- "model {
            C <- 10000
            for (j in 1:nobs){
                zeros[j] ~ dpois(phi[j])
                
                phi[j] <- -log(L[j]) + C
                
                L[j] <- add[j]*(lambda[j]^y[j])*(1-lambda[j])^(1-y[j])
          
                add[j] = ifelse(lambda[j] == 0.5, 2, aux[j])
                aux[j] = 2*arctanh(1 - 2*lambda[j] + 10^(-323))/(1 - 2*lambda[j] + 10^(-323))
                
                logit(lambda[j]) <- inprod(X[j, ], beta)
            }
            beta[1] ~ dnorm(0,1)
            beta[2] ~ dgamma(1,1)
    }"
    
    
    n_chains = 1
    n_adapt = 5000
    n_iter = 10000
    n_thin = 1
    n_burnin = 5000
    
    # generate data
    n = 100
    
    Ffun = plogis
    design_mat = cbind(1, matrix(seq(0,1,by = 0.2), ncol=1))
    
    gen_data = function(n, beta) {
      X = design_mat[sample(nrow(design_mat), size = n, replace = T), ]
      lambda = Ffun(X %*% beta)
      y = rcbern(n,lambda)
      y <- as.vector(y)
      idx = is.nan(y)
      y[idx] = runif(length(idx))
      list(X = X, y = y)
    }
    
    rcbern = function(n,lam){
      x = runif(n)
      y = log((x*(2*lam-1) - (lam-1))/(1-lam))/log(lam/(1-lam))
      return(y)
    }
    
    beta = as.matrix(c(-3, 5))
    jags_data = gen_data(n, beta)
    jags_data$nobs = n
    jg_model <- jags.model(textConnection(model1),
                           data = jags_data,
                           n.chains = n_chains,
                           n.adapt = n_adapt)
    update(jg_model, n.iter = n_burnin)
    result <- coda.samples(jg_model, 
                           variable.names = c("beta"),
                           n.iter = n_iter, 
                           thin = n_thin,
                           n.chains = n_chains)
    
    beta_est = list(apply(result[[1]],2,median))
    

    Output:

    beta_est
    [[1]]
         beta[1]      beta[2] 
    -0.006031984  0.692007301 
    

    You can also try y <- y[,1,drop=T] in the same function instead of as.vector()