pythonpytorchgenerative-adversarial-networkdcgan

PyTorch expected CPU got CUDA tensor


I've been struggling to find what's wrong in my code. I'm trying to implement DCGAN paper and from the past 1 hour, I'm going through these errors. Could anyone please help me fix this?

I'm training this on Google colab with GPU runtime but I'm getting this error. Yesterday, I implemented the first GAN paper by Ian Goodfellow and I did not got this error. I don't know what's happening any help would be appreciated. Also, please check whether the gen_input is correct or not.

Here is the code:

import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import save_image
import torch.optim as optim

#---------------configuration part------------------#
lr = 0.00002 #learning rate
nc = 3 #color channels
nz = 100 #size of latent vector or size of generator input
ngf = 64 #size of feature maps in generator
ndf = 64 #size of feature maps in discriminator
height = 128 #height of the image
width = 128 #width of the image
num_epochs = 100 #the variable name tells everything
workers = 2 #number of workers to load the data in batches
batch_size = 64 #batch size
image_size = 128 #resizing parameter
root = '/content/gdrive/My Drive/sharingans/' #path to the training directory
beta1 = 0.4

#---------------------------------------------------#
#define the shape of the image
img_shape = (nc, height, width)

#---------------------------------------------------#
#define the weights initialization function
#in the DCGAN paper they state that all weights should be
#randomly initialize weights from normal distribution
#the following function does that

def weights_init(m):
    classname = m.__class__.__name__ #returns the class name(eg: Conv2d or ConvTranspose2d)
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02) #0.0 is mean and 0.02 is standard deviation
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1, 0.02) #1 is mean and 0.02 is standard deviation
        nn.init.constant_(m.bias.data, 0.0)

#---------------------------------------------------#


#implement the data loader function to load images

def load_data(image_size, root):
    transform = transforms.Compose([
        transforms.Resize(image_size),
        transforms.ToTensor(),
        transforms.Normalize((0.486, 0.486, 0.486), (0.486, 0.486, 0.486))
        ])

    train_set = torchvision.datasets.ImageFolder(root = root, transform = transform)

    return train_set
train_set = load_data(128, root)
#getting the batches of data
train_data = torch.utils.data.DataLoader(train_set, batch_size = batch_size, shuffle = True, num_workers = workers)

#---------------------------------------------------#
#implement the generator network

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.convt1 = nn.ConvTranspose2d(in_channels = nz, out_channels = ngf*8, kernel_size = 4, stride = 1, padding = 0, bias = False)
        self.convt2 = nn.ConvTranspose2d(in_channels = ngf*8, out_channels = ngf*4, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.convt3 = nn.ConvTranspose2d(in_channels = ngf*4, out_channels = ngf*2, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.convt4 = nn.ConvTranspose2d(in_channels = ngf*2, out_channels = ngf, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.convt5 = nn.ConvTranspose2d(in_channels = ngf, out_channels = 3, kernel_size=4, stride = 2, padding = 1, bias = False)

    def forward(self, t):
        t = self.convt1(t)
        t = nn.BatchNorm2d(t)
        t = F.relu(t)

        t = self.convt2(t)
        t = nn.BatchNorm2d(t)
        t = F.relu(t)

        t = self.convt3(t)
        t = nn.BatchNorm2d(t)
        t = F.relu(t)

        t = self.convt4(t)
        t = nn.BatchNorm2d(t)
        t = F.relu(t)

        t = self.convt5(t)
        t = F.tanh(t)

        return t

#---------------------------------------------------#
#implement the discriminator network

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.conv1 = nn.Conv2d(in_channels = 3, out_channels = ndf, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.conv2 = nn.Conv2d(in_channels = ndf, out_channels = ndf*2, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.conv3 = nn.Conv2d(in_channels = ndf*2, out_channels = ndf*4, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.conv4 = nn.Conv2d(in_channels = ndf*4, out_channels = ndf*8, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.conv5 = nn.Conv2d(in_channels = ndf*8, out_channels = 1, kernel_size = 4, stride = 1, padding = 0, bias = False)

    def forward(self, t):
        t = self.conv1(t)
        t = F.leaky_relu(t, 0.2)

        t = self.conv2(t)
        t = nn.BatchNorm2d(t)
        t = F.leaky_relu(t, 0.2)

        t = self.conv3(t)
        t = nn.BatchNorm2d(t)
        t = F.leaky_relu(t, 0.2)

        t = self.conv4(t)
        t = nn.BatchNorm2d(t)
        t = F.leaky_relu(t, 0.2)

        t = self.conv5(t)
        t = F.sigmoid(t)

        return t

#---------------------------------------------------#
#create the instances of networks

generator = Generator()
discriminator = Discriminator()

#apply the weights_init function to randomly initialize weights to mean = 0 and std = 0.02
generator.apply(weights_init)
discriminator.apply(weights_init)

print(generator)
print(discriminator)

#---------------------------------------------------#
#define the loss function
criterion = nn.BCELoss()

#fixed noise
noise = torch.randn(64, nz, 1, 1).cuda()

#conventions for fake and real labels
real_label = 1
fake_label = 0

#create the optimizer instances
optimizer_d = optim.Adam(discriminator.parameters(), lr = lr, betas = (beta1, 0.999))
optimizer_g = optim.Adam(generator.parameters(), lr = lr, betas = (beta1, 0.999))

#---------------------------------------------------#
if torch.cuda.is_available():
    generator = generator.cuda()
    discriminator = discriminator.cuda()
    criterion = criterion.cuda()

Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
#---------------------------------------------------#

#Training loop
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_data):
        
        #ones is passed when the data is coming from original dataset
        #zeros is passed when the data is coming from generator
        ones = Tensor(images.size(0), 1).fill_(1.0)
        zeros = Tensor(images.size(0),1).fill_(0.0)
        
        real_images = images.cuda()
        
        optimizer_g.zero_grad()
        
        #following is the input to the generator
        #we create tensor with random noise of size 100
        gen_input = np.random.normal(0,3,(512,100,4,4))
        gen_input = torch.tensor(gen_input, dtype = torch.float32)
        gen_input = gen_input.cuda()
        #we then pass it to generator()
        gen = generator(gen_input) #this returns a image
        
        #now calculate the loss wrt to discriminator output
        g_loss = criterion(discriminator(gen), ones)
        
        #backpropagation
        g_loss.backward()
        #update weights
        optimizer_g.step()
        
        #above was for generator network
        
        #now for the discriminator network
        optimizer_d.zero_grad()
        
        #calculate the real loss
        real_loss = criterion(discriminator(real_images), ones)
        #calculate the fake loss from the generated image
        fake_loss = criterion(discriminator(gen.detach()),zeros)
        #average out the losses
        d_loss = (real_loss + fake_loss)/2
        
        #backpropagation
        d_loss.backward()
        #update weights
        optimizer_d.step()
        
        if i%100 == 0:
            print("[EPOCH %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"%(epoch, epochs, i, len(dataset), d_loss.item(), g_loss.item()))

        total_batch = epoch * len(dataset) + i
        if total_batch%20 == 0:
            save_image(gen.data[:5], '/content/gdrive/My Drive/tttt/%d.png' % total_batch, nrow=5)

And here's the error:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-36-0af32f223344> in <module>()
     18         gen_input = gen_input.cuda()
     19         #we then pass it to generator()
---> 20         gen = generator(gen_input) #this returns a image
     21 
     22         #now calculate the loss wrt to discriminator output

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/batchnorm.py in __init__(self, num_features, eps, momentum, affine, track_running_stats)
     40         self.track_running_stats = track_running_stats
     41         if self.affine:
---> 42             self.weight = Parameter(torch.Tensor(num_features))
     43             self.bias = Parameter(torch.Tensor(num_features))
     44         else:

TypeError: expected CPU (got CUDA)

Any help would be appreciated. Thank you!


Solution

  • Do you use colab? Then you should activate the GPU. But if you want to stay on the CPU:

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    

    Now do this on EVERY model or tensor you create, for example:

    x = torch.tensor(...).to(device=device)
    model = Model(...).to(device=device)
    

    Then, if you switch around between cpu and gpu it handles it automaticaly for you. But as I said, you probably want to activate cuda by switching to colabs GPU