pythonpandasperformance

What is the fastest way to find the group by max in a column in a Python Pandas dataframe AND mark it?


UPDATE2: I actually have 2000 draws not 3.

UPDATE: My df column A was wrong. I fixed it.

I have a really large version of df below.

data = {'A':[11111, 11111, 33333,11111], 'B':[101, 101, 102, 101],'C':[1,2,3,4],
    'draw0':[5, 6, 2, 1], 'draw1':[4,3,2,1], 'draw2':[2,3,4,6]}
df = pd.DataFrame(data)

     A     B   C  draw0   draw1   draw2
0  11111  101  1      5      4      2
1  11111  101  2      6      3      3
2  33333  102  3      2      2      4
3  11111  101  4      1      1      6

I am trying to find which of the draw columns wins for each draw. Below is my current attempt, but its slow, but works. I feel like there should be a way with apply or something to make it faster.

draw_cols = [col for col in df if col.startswith('draw')]

for col in draw_cols:
    max_idx = df.groupby(['A', 'B'])[col].idxmax().values
    df.loc[max_idx, col] = 1
    df.loc[~df.index.isin(max_idx), col] = 0

Desired Output:

     A     B   C  draw0  draw1  draw2
0  11111  101  1      0      1      0
1  11111  101  2      1      0      0
2  33333  102  3      1      1      1
3  11111  101  4      0      0      1

I generate the 2000 columns like so:

def simulateDraw(df, n=2000):
    
    #simulate n drawings from the alpha and beta values and create columns 
    return pd.concat([df,
           df.apply(lambda row: pd.Series(np.random.beta(row.C, row.C, size=n)), axis = 1).add_prefix('draw')],
          axis = 1)

Solution

  • # groupby and transform the idxmax
    max_idx = df.groupby(['A', 'B'])[df.columns[3:]].transform('idxmax')
    # create a new column that is just your index
    # this is done just in case your real data does not have a range index
    max_idx['index'] = max_idx.index.values
    # where the max_idx is in the index to return bool values and then update the original df
    df.update(max_idx.isin(max_idx['index']).astype(int))
    
           A    B  C  draw0  draw1  draw2
    0  11111  101  1      0      1      0
    1  11111  101  2      1      0      0
    2  33333  102  3      1      1      1
    3  11111  101  4      0      0      1