the data source/file location on the web is: https://www.newyorkfed.org/medialibrary/media/survey/empire/data/esms_seasonallyadjusted_diffusion.csv However as there were issues connecting I saved it ('esms_seasonallyadjusted_diffusion.csv') locally which is the best to do for speed anyway and I also saved it to github: https://github.com/me50/hlar65/blob/master/ESMS_SeasonallyAdjusted_Diffusion.csv')
2 questionsw:
Thanks everyone for your help '''
import pandas as pd
import numpy as np
from pandas.plotting import scatter_matrix
import scipy as sp
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sn
df = dd.read_csv('https://www.newyorkfed.org/medialibrary/media/survey/empire/data/esms_seasonallyadjusted_diffusion.csv')
df = df.rename(columns={'surveyDate':'Date',
'GACDISA': 'IndexAll',
'NECDISA': 'NumberofEmployees',
'NOCDISA': 'NewOrders',
'PPCDISA': 'PricesPaid',
'PRCDISA': 'PricesReceived'})
headers = df.columns
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
IndexAll = df['IndexAll']
NumberofEmployees = df['NumberofEmployees']
NewOrders = df['NewOrders']
PricesReceived = df['PricesReceived']
data = df[['IndexAll', 'NumberofEmployees', 'NewOrders', 'PricesReceived']]
data2 = data.copy()
ds = data2
FS_A = 14
FS_L = 16
FS_T = 20
FS_MT = 25
fig, ((ax0, ax1), (ax2,ax3)) = plt.subplots(nrows=2, ncols=2, figsize=(20,15))
# density=True : probability density i.e. prb of an outcome; False = actual # of frequency
ds['IndexAll'].plot(ax=ax0, color='red')
ax0.set_title('New York Empire Manufacturing Index', fontsize = FS_T)
ax0.set_ylabel('Date', fontsize = FS_A)
ax0.set_xlabel('Empire Index', fontsize = FS_L)
ax0.tick_params(labelsize=FS_A)
ds['NumberofEmployees'].plot(ax=ax1, color='blue')
ax1.set_title('Empire: Number of Employees', fontsize = FS_T)
ax1.set_ylabel('Date', fontsize = FS_L)
ax1.set_xlabel('Number of Employees', fontsize = FS_L)
ax1.tick_params(labelsize=FS_A)
ds['NewOrders'].plot(ax=ax2, color='green')
ax2.set_title('Empire: New Orders', fontsize = FS_T)
ax2.set_ylabel('Date', fontsize = FS_L)
ax2.set_xlabel('New Orders', fontsize = FS_L)
ax2.tick_params(labelsize=FS_A)
ds['PricesReceived'].plot(ax=ax3, color='black')
ax3.set_title('Empire: Prices Received', fontsize = FS_T)
ax3.set_ylabel('Date', fontsize = FS_L)
ax3.set_xlabel('Prices Received', fontsize = FS_L)
ax3.tick_params(labelsize=FS_A)
fig.tight_layout()
fig.suptitle('New York Manufacturing Index Main Components - Showing the Depths of COVD19 in 2020', fontsize = FS_MT)
fig.tight_layout()
fig.subplots_adjust(top=0.88)
fig.subplots_adjust(bottom = -0.2)
fig.savefig("Empire.png")
plt.show()
'''
For the first question have you set any proxy? I think it comes from the proxy setting.
About the second one I can do some cleanup but it is very dependent on the developer code style. you can write a script in several different ways.
note that:
- You can parse date in read_csv call
- Do all the stuff you want to do with df in one step using parentheses
- You can define arrays for your parameters and draw all plots in a for loop
df = (
pd
.read_csv('https://www.newyorkfed.org/medialibrary/media/survey/empire/data/esms_seasonallyadjusted_diffusion.csv',
parse_dates=['surveyDate'])
.rename(columns={'surveyDate':'Date',
'GACDISA': 'IndexAll',
'NECDISA': 'NumberofEmployees',
'NOCDISA': 'NewOrders',
'PPCDISA': 'PricesPaid',
'PRCDISA': 'PricesReceived'})
.set_index('Date')
)
FS_A = 14
FS_L = 16
FS_T = 20
FS_MT = 25
titles = ['New York Empire Manufacturing Index','Empire: Number of Employees','Empire: New Orders','Empire: Prices Received']
xlabels = ['Empire Index','Number of Employees','New Orders','Prices Received']
colors=['red','blue','green','black']
columns = ['IndexAll', 'NumberofEmployees', 'NewOrders', 'PricesReceived']
ds = df[columns]
k=0
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(20,15))
for i in range(2):
for j in range(2):
ds[columns[k]].plot(ax=axes[i][j], color=colors[k])
axes[i][j].set_title(titles[k], fontsize = FS_T)
axes[i][j].set_ylabel('Date', fontsize = FS_A)
axes[i][j].set_xlabel(xlabels[k], fontsize = FS_L)
axes[i][j].tick_params(labelsize=FS_A)
k+=1