I am trying to run following code that reported running well with other users, but I found this error.
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils import data
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import cv2
import numpy as np
import csv
samples = []
with open('data/driving_log.csv') as csvfile:
reader = csv.reader(csvfile)
next(reader, None)
for line in reader:
samples.append(line)
train_len = int(0.8*len(samples))
valid_len = len(samples) - train_len
train_samples, validation_samples = data.random_split(samples, lengths=[train_len, valid_len])
def augment(imgName, angle):
name = 'data/IMG/' + imgName.split('/')[-1]
current_image = cv2.imread(name)
current_image = current_image[65:-25, :, :]
if np.random.rand() < 0.5:
current_image = cv2.flip(current_image, 1)
angle = angle * -1.0
return current_image, angle
class Dataset(data.Dataset):
def __init__(self, samples, transform=None):
self.samples = samples
self.transform = transform
def __getitem__(self, index):
batch_samples = self.samples[index]
steering_angle = float(batch_samples[3])
center_img, steering_angle_center = augment(batch_samples[0], steering_angle)
left_img, steering_angle_left = augment(batch_samples[1], steering_angle + 0.4)
right_img, steering_angle_right = augment(batch_samples[2], steering_angle - 0.4)
center_img = self.transform(center_img)
left_img = self.transform(left_img)
right_img = self.transform(right_img)
return (center_img, steering_angle_center), (left_img, steering_angle_left), (right_img, steering_angle_right)
def __len__(self):
return len(self.samples)
transformations = transforms.Compose([transforms.Lambda(lambda x: (x / 255.0) - 0.5)])
params = {'batch_size': 32,
'shuffle': True,
'num_workers': 4}
training_set = Dataset(train_samples, transformations)
training_generator = data.DataLoader(training_set, **params)
validation_set = Dataset(validation_samples, transformations)
validation_generator = data.DataLoader(validation_set, **params)
class NetworkDense(nn.Module):
def __init__(self):
super(NetworkDense, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv2d(3, 24, 5, stride=2),
nn.ELU(),
nn.Conv2d(24, 36, 5, stride=2),
nn.ELU(),
nn.Conv2d(36, 48, 5, stride=2),
nn.ELU(),
nn.Conv2d(48, 64, 3),
nn.ELU(),
nn.Conv2d(64, 64, 3),
nn.Dropout(0.25)
)
self.linear_layers = nn.Sequential(
nn.Linear(in_features=64 * 2 * 33, out_features=100),
nn.ELU(),
nn.Linear(in_features=100, out_features=50),
nn.ELU(),
nn.Linear(in_features=50, out_features=10),
nn.Linear(in_features=10, out_features=1)
)
def forward(self, input):
input = input.view(input.size(0), 3, 70, 320)
output = self.conv_layers(input)
output = output.view(output.size(0), -1)
output = self.linear_layers(output)
return output
class NetworkLight(nn.Module):
def __init__(self):
super(NetworkLight, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv2d(3, 24, 3, stride=2),
nn.ELU(),
nn.Conv2d(24, 48, 3, stride=2),
nn.MaxPool2d(4, stride=4),
nn.Dropout(p=0.25)
)
self.linear_layers = nn.Sequential(
nn.Linear(in_features=48*4*19, out_features=50),
nn.ELU(),
nn.Linear(in_features=50, out_features=10),
nn.Linear(in_features=10, out_features=1)
)
def forward(self, input):
input = input.view(input.size(0), 3, 70, 320)
output = self.conv_layers(input)
output = output.view(output.size(0), -1)
output = self.linear_layers(output)
return output
model = NetworkLight()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
criterion = nn.MSELoss()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('device is: ', device)
def toDevice(datas, device):
imgs, angles = datas
return imgs.float().to(device), angles.float().to(device)
max_epochs = 22
for epoch in range(max_epochs):
model.to(device)
# Training
train_loss = 0
model.train()
for local_batch, (centers, lefts, rights) in enumerate(training_generator):
# Transfer to GPU
centers, lefts, rights = toDevice(centers, device), toDevice(lefts, device), toDevice(rights, device)
# Model computations
optimizer.zero_grad()
datas = [centers, lefts, rights]
for data in datas:
imgs, angles = data
# print("training image: ", imgs.shape)
outputs = model(imgs)
loss = criterion(outputs, angles.unsqueeze(1))
loss.backward()
optimizer.step()
train_loss += loss.data[0].item()
if local_batch % 100 == 0:
print('Loss: %.3f '
% (train_loss/(local_batch+1)))
# Validation
model.eval()
valid_loss = 0
with torch.set_grad_enabled(False):
for local_batch, (centers, lefts, rights) in enumerate(validation_generator):
# Transfer to GPU
centers, lefts, rights = toDevice(centers, device), toDevice(lefts, device), toDevice(rights, device)
# Model computations
optimizer.zero_grad()
datas = [centers, lefts, rights]
for data in datas:
imgs, angles = data
# print("Validation image: ", imgs.shape)
outputs = model(imgs)
loss = criterion(outputs, angles.unsqueeze(1))
valid_loss += loss.data[0].item()
if local_batch % 100 == 0:
print('Valid Loss: %.3f '
% (valid_loss/(local_batch+1)))
state = {
'model': model.module if device == 'cuda' else model,
}
torch.save(state, 'model.h5')
this is the error message:
"D:\VICO\Back up\venv\Scripts\python.exe" "D:/VICO/Back up/venv/Scripts/self_driving_car.py"
device is: cpu
Traceback (most recent call last):
File "D:/VICO/Back up/venv/Scripts/self_driving_car.py", line 163, in <module>
for local_batch, (centers, lefts, rights) in enumerate(training_generator):
File "D:\VICO\Back up\venv\lib\site-packages\torch\utils\data\dataloader.py", line 291, in __iter__
return _MultiProcessingDataLoaderIter(self)
File "D:\VICO\Back up\venv\lib\site-packages\torch\utils\data\dataloader.py", line 737, in __init__
w.start()
File "C:\Users\isonata\AppData\Local\Programs\Python\Python37\lib\multiprocessing\process.py", line 112, in start
self._popen = self._Popen(self)
File "C:\Users\isonata\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\isonata\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "C:\Users\isonata\AppData\Local\Programs\Python\Python37\lib\multiprocessing\popen_spawn_win32.py", line 89, in __init__
reduction.dump(process_obj, to_child)
File "C:\Users\isonata\AppData\Local\Programs\Python\Python37\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
_pickle.PicklingError: Can't pickle <function <lambda> at 0x0000002F2175B048>: attribute lookup <lambda> on __main__ failed
Process finished with exit code 1
I am not sure the next step to resolve the problem.
pickle
doesn't pickle function objects. It expects to find the function object by importing its module and looking up its name. lambdas are anonymous functions (no name) so that doesn't work. The solution is to name the function at module level. The only lambda I found in your code is
transformations = transforms.Compose([transforms.Lambda(lambda x: (x / 255.0) - 0.5)])
Assuming that's the troublesome function, you can
def _my_normalization(x):
return x/255.0 - 0.5
transformations = transforms.Compose([transforms.Lambda(_my_normalization])
You may have other problems because it looks like you are doing work at module level. If this is a multiprocessing thing and you are running on windows, the new process will import the file and run all of that module level code again. This isn't a problem on linux/mac where a forked process already has the modules loaded from the parent.