I have used recipe()
function in tidymodels
packages for imputation missing values and fixing imbalanced data.
here is my data;
mer_df <- mer2 %>%
filter(!is.na(laststagestatus2)) %>%
select(Id, Age_Range__c, Gender__c, numberoflead, leadduration, firsttouch, lasttouch, laststagestatus2)%>%
mutate_if(is.character, factor) %>%
mutate_if(is.logical, as.integer)
# A tibble: 197,836 x 8
Id Age_Range__c Gender__c numberoflead leadduration firsttouch lasttouch
<fct> <fct> <fct> <int> <dbl> <fct> <fct>
1 0010~ NA NA 2 5.99 Dealer IB~ Walk in
2 0010~ NA NA 1 0 Online Se~ Online S~
3 0010~ NA NA 1 0 Walk in Walk in
4 0010~ NA NA 1 0 Online Se~ Online S~
5 0010~ NA NA 2 0.0128 Dealer IB~ Dealer I~
6 0010~ NA NA 1 0 OB Call OB Call
7 0010~ NA NA 1 0 Dealer IB~ Dealer I~
8 0010~ NA NA 4 73.9 Dealer IB~ Walk in
9 0010~ NA Male 24 0.000208 OB Call OB Call
10 0010~ NA NA 18 0.000150 OB Call OB Call
# ... with 197,826 more rows, and 1 more variable: laststagestatus2 <fct>
here is my codes;
mer_rec <- recipe(laststagestatus2 ~ ., data = mer_train)%>%
step_medianimpute(numberoflead,leadduration)%>%
step_knnimpute(Gender__c,Age_Range__c,fisrsttouch,lasttouch) %>%
step_other(Id,firsttouch) %>%
step_other(Id,lasttouch) %>%
step_dummy(all_nominal(), -laststagestatus2) %>%
step_smote(laststagestatus2)
mer_rec %>% prep() %>% juice()
glm_spec <- logistic_reg() %>%
set_engine("glm")
rf_spec <- rand_forest(trees = 1000) %>%
set_mode("classification") %>%
set_engine("ranger")
mer_wf <- workflow() %>%
add_recipe(mer_rec)
It just works fine until here
Now I m using metric_set()
function to fit each of resamples.
here is my codes as follows:
mer_metrics <- metric_set(roc_auc, accuracy, sensitivity, specificity)
glm_rs <- mer_wf %>%
add_model(glm_spec) %>%
fit_resamples(
resamples = mer_folds,
metrics = mer_metrics,
control = control_resamples(save_pred = TRUE)
I m getting the error says:
Error: All inputs to `metric_set()` must be functions. These inputs are not: (2).
but it works without accuracy parameter
merco_metrics <- metric_set(roc_auc, sensitivity, specificity)
Anyone have any suggestions on how to do this? Thanks a lot for help!
May be there is another variable named accuracy
that is defined in your environment. Try typing yardstick::accuracy
instead.
mer_metrics <- metric_set(roc_auc, yardstick::accuracy, sensitivity, specificity)