algorithmkotlinnp-hard

Recursively finding all partitions of a set of n objects into k non-empty subsets


I want to find all partitions of a n elements into k subsets, this is my algorithm based on recursive formula for finding all Stirling second numbers

fun main(args: Array<String>) {
    val s = mutableSetOf(1, 2, 3, 4, 5)
    val partitions = 3
    val res = mutableSetOf<MutableSet<MutableSet<Int>>>()
    partition(s, partitions, res)
    //println(res)
    println("Second kind stirling number ${res.size}")
}

fun partition(inputSet: MutableSet<Int>, numOfPartitions: Int, result: MutableSet<MutableSet<MutableSet<Int>>>) {
    if (inputSet.size == numOfPartitions) {
        val sets = inputSet.map { mutableSetOf(it) }.toMutableSet()
        result.add(sets)
    }
    else if (numOfPartitions == 1) {
        result.add(mutableSetOf(inputSet))
    }
    else {
        val popped: Int = inputSet.first().also { inputSet.remove(it) }

        val r1 = mutableSetOf<MutableSet<MutableSet<Int>>>()
        partition(inputSet, numOfPartitions, r1) //add popped to each set in solution (all combinations)

        for (solution in r1) {
            for (set in solution) {
                set.add(popped)
                result.add(solution.map { it.toMutableSet() }.toMutableSet()) //deep copy
                set.remove(popped)
            }
        }
        val r2 = mutableSetOf<MutableSet<MutableSet<Int>>>()
        partition(inputSet, numOfPartitions - 1, r2) //popped is single elem set

        r2.map { it.add(mutableSetOf(popped)) }
        r2.map { result.add(it) }
    }
}

Code works well for k = 2, but for bigger n and k it loses some partitions and I can't find a mistake here. Example: n = 5 and k = 3 outputs Second kind stirling number 19 the correct output would be 25.


Solution

  • If you can read Python code, consider the next algorithm which I've quickly adapted from my implementation of set partition into equal size parts.

    Recursive function fills K parts with N values.

    The lastfilled parameter helps to avoid duplicates - it provides an increasing sequence of leading (smallest) elements of every part.

    The empty parameter is intended to avoid empty parts.

    def genp(parts:list, empty, n, k, m, lastfilled):
        if m == n:
            print(parts)
            global c
            c+=1
            return
        if n - m == empty:
            start = k - empty
        else:
            start = 0
        for i in range(start, min(k, lastfilled + 2)):
            parts[i].append(m)
            if len(parts[i]) == 1:
                empty -= 1
            genp(parts, empty, n, k, m+1, max(i, lastfilled))
            parts[i].pop()
            if len(parts[i]) == 0:
                empty += 1
    
    
    def setkparts(n, k):
        parts = [[] for _ in range(k)]
        cnts = [0]*k
        genp(parts, k, n, k, 0, -1)
    
    c = 0
    setkparts(5,3)
    #setkparts(7,5)
    print(c)
    
    [[0, 1, 2], [3], [4]]
    [[0, 1, 3], [2], [4]]
    [[0, 1], [2, 3], [4]]
    [[0, 1, 4], [2], [3]]
    [[0, 1], [2, 4], [3]]
    [[0, 1], [2], [3, 4]]
    [[0, 2, 3], [1], [4]]
    [[0, 2], [1, 3], [4]]
    [[0, 2, 4], [1], [3]]
    [[0, 2], [1, 4], [3]]
    [[0, 2], [1], [3, 4]]
    [[0, 3], [1, 2], [4]]
    [[0], [1, 2, 3], [4]]
    [[0, 4], [1, 2], [3]]
    [[0], [1, 2, 4], [3]]
    [[0], [1, 2], [3, 4]]
    [[0, 3, 4], [1], [2]]
    [[0, 3], [1, 4], [2]]
    [[0, 3], [1], [2, 4]]
    [[0, 4], [1, 3], [2]]
    [[0], [1, 3, 4], [2]]
    [[0], [1, 3], [2, 4]]
    [[0, 4], [1], [2, 3]]
    [[0], [1, 4], [2, 3]]
    [[0], [1], [2, 3, 4]]
    25