c++boostodeodeintintegrate

BOOST:ODEINT Sudden Iteration stop


I'm new in the world of C++ and I'm having some trouble with the boost library. In my problem I want to solve a ODE-System with 5 equations. It isn't a stiff problem. As iterative method I used both integreate(rhs, x0, t0, tf, size_step, write_output) and integreate_adaptive(stepper, sys, x0, t0, tf, size_step, write_output). Both these method actually integrate the equations but giving me non-sense results changing the size of the step from 0.001 to 5 almost randomly. The equations and data are correct. What can I do to fix this problem? Here is the code:

#include <iostream>
#include <vector>
#include <boost/numeric/odeint.hpp>
#include <fstream>
#include <boost/array.hpp>

using namespace std;
using namespace boost::numeric::odeint;

//DATA
double Lin = 20000;                             // kg/h
double Gdry = 15000;                            // kg/h
double P = 760;                                 // mmHg
double TinH2O = 50;                             // °C
double ToutH2O = 25;                            // °C
double Tinair = 20;                             // °C
double Z = 0.5;                                 // relative humidity
double Cu = 0.26;                               // kcal/kg*K
double CpL = 1;                                 // kcal/kg*K
double DHev = 580;                              // kcal/kg
double hga = 4000;                              // kcal/m/h/K
double hla = 30000;                             // kcal/m/h/K
double A = -49.705;                             // Pev 1st coeff    mmHg vs °C
double B = 2.71;                                // Pev 2nd coeff    mmHg vs °C
double Usair = 0.62*(A + B*Tinair) / P;
double Uair = Z*Usair;
double Kua = hga / Cu;
double L0 = 19292;                              // kg/h


typedef vector< double > state_type;
vector <double> pack_height;
vector <double> Umidity;
vector <double> T_liquid;
vector <double> T_gas;
vector <double> Liquid_flow;
vector <double> Gas_flow;

void rhs(const state_type& x , state_type& dxdt , const double z )
{// U Tl Tg L G

double Ti = (hla*x[1] + hga*x[2] + Kua*DHev*(x[0] - 0.62*A / P)) / (hla + hga + Kua*DHev*0.62*B / P);
double Ui = 0.62*(A + B*Ti) / P;

dxdt[0] = Kua*(Ui - x[0]) / Gdry / 100;
dxdt[1] = hla*(x[1] - Ti) / x[3] / CpL / 100;
dxdt[2] = hga*(Ti - x[2]) / Gdry / Cu / 100;
dxdt[3] = Kua*(Ui - x[0]) / 100;
dxdt[4] = Kua*(Ui - x[0]) / 100;
}

void write_output(const state_type& x, const double z)
{
pack_height.push_back(z);
Umidity.push_back(x[0]);
T_liquid.push_back(x[1]);
T_gas.push_back(x[2]);
Liquid_flow.push_back(x[3]);
Gas_flow.push_back(x[4]);

cout << z << "      " << x[0] << "      " << x[1] << "      " << x[2] << "      " << x[3] << "      " << x[4] << endl;
}

int main()
{
state_type x(5);
x[0] = Uair;
x[1] = ToutH2O;
x[2] = Tinair;
x[3] = L0;
x[4] = Gdry;

double z0 = 0.0;
double zf = 5.5;
double stepsize = 0.001;
integrate( rhs , x , z0 , zf , stepsize , write_output );

return 0;
}

And this is the final results that i get from the prompt:

    0         0.00183349      25           20           19292      15000
    0.001     0.00183356      25           20           19292      15000
    0.0055    0.0018339       25.0002      20.0001      19292      15000
    0.02575   0.00183542      25.001       20.0007      19292      15000
    0.116875  0.00184228      25.0046      20.003       19292.1    15000.1
    0.526938  0.00187312      25.0206      20.0135      19292.6    15000.6
    2.37222   0.00201203      25.0928      20.0608      19294.7    15002.7
    5.5       0.00224788      25.2155      20.142       19298.2    15006.2

Only the first iteration has the right-asked stepsize.. and obiviously the solution is not the right one.. what can i do? Thank you in advance. :)


Solution

  • If you read the documentation, then you will find that the constant step-size routines are integrate_const and integrate_n_steps, or possibly integrate_adaptive with a non-controlled stepper.

    The short call to integrate uses the standard dopri5 stepper with adaptive step size, so that the changing step size is no surprise. You could possibly use the dense output of the stepper to interpolate values at equidistant times.