I have an array transformer type that exhibits interleaved effect layers to ensure a lawful effect implementation. You can easily read the structure from the type's of
operation const arrOfT = of => x => of([of(x)])
.
The type implements an effectful fold as its basic operation. I use a left fold, because the underlying array type is inherently strict:
const arrFoldT = chain => f => init => mmx =>
chain(mmx) (mx => {
const go = (acc, i) =>
i === mx.length
? acc
: chain(mx[i]) (x =>
go(f(acc) (x), i + 1))
// ^^^^^^^^^^^^^^^^^^^^^ non-tail call position
return go(init, 0);
});
As you can see the implementation is not stack safe. However, stack safety is just another computational effect that can be encoded through a monad. I implemented one for the Trampoline
type:
const monadRec = o => {
while (o.tag === "Chain")
o = o.f(o.x);
return o.tag === "Of"
? o.x
: _throw(new TypeError("unknown case"));
};
const recChain = mx => fm =>
mx.tag === "Chain" ? Chain(mx.x) (x => recChain(mx.f(x)) (fm))
: mx.tag === "Of" ? fm(mx.x)
: _throw(new TypeError("unknown case"));
const Chain = x => f =>
({tag: "Chain", f, x});
const Of = x =>
({tag: "Of", x});
While the implementations are straightforward the application is not. I am pretty sure I am applying it all wrong:
const mmx = Of(
Array(1e5)
.fill(Chain(1) (x => Of(x))));
// ^^^^^^^^^^^^ redundant continuation
const main = arrFoldT(recChain)
(acc => y => recMap(x => x + y) (acc))
(Of(0))
(mmx);
monadRec(main); // 100000
I need to use Chain
when creating the large effectful array, because Of
signals the the control flow to break out of the trampoline. With Chain
on the other hand I have to specifiy a redundant continuation.
My first idea was to flip Chain
's arguments and rely on partial application, but this doesn't work with the current implemenetation.
Is there a way to use the type more efficiently?
Here is a working example:
// ARRAYT
const arrFoldT = chain => f => init => mmx =>
chain(mmx) (mx => {
const go = (acc, i) =>
i === mx.length
? acc
: chain(mx[i]) (x =>
go(f(acc) (x), i + 1))
return go(init, 0);
});
// TRAMPOLINE
const monadRec = o => {
while (o.tag === "Chain")
o = o.f(o.x);
return o.tag === "Of"
? o.x
: _throw(new TypeError("unknown case"));
};
const Chain = x => f =>
({tag: "Chain", f, x});
const Of = x =>
({tag: "Of", x});
// Functor
const recMap = f => tx =>
Of(f(tx.x));
// Monad
const recChain = mx => fm =>
mx.tag === "Chain" ? Chain(mx.x) (x => recChain(mx.f(x)) (fm))
: mx.tag === "Of" ? fm(mx.x)
: _throw(new TypeError("unknown case"));
const recOf = Of;
// MAIN
const mmx = Of(
Array(1e5)
.fill(Chain(1) (x => Of(x))));
const main = arrFoldT(recChain)
(acc => y => recMap(x => x + y) (acc))
(Of(0))
(mmx);
console.log(
monadRec(main)); // 100000
First, the definition of your array monad transformer is wrong.
ArrayT m a = m (Array (m a))
The above type definition does not correctly interleave the underlying monad.
Following is an example value of the above data type.
of([of(1), of(2), of(3)])
There are several problems with this data type.
Following is an example value of the correct array monad transformer type.
of([1, of([2, of([3, of([])])])])
Note that.
Now, I understand why you want to define ArrayT m a = m (Array (m a))
. If m = Identity
then you get back an actual Array a
, which supports random access of elements.
of([of(1), of(2), of(3)]) === [1, 2, 3]
On the other hand, the recursive array monad transformer type returns a linked list when m = Identity
.
of([1, of([2, of([3, of([])])])]) === [1, [2, [3, []]]]
However, there's no way to create a lawful array monad transformer type which also returns an actual array when the underlying monad is Identity
. This is because monad transformers are inherently algebraic data structures, and arrays are not algebraic.
The closest you can get is by defining ArrayT m a = Array (m a)
. However, this would only satisfy the monad laws when the underlying monad is commutative.
Just remember, when defining a monad transformer data type.
Coming back, the Trampoline
monad is just the Free
monad. We can define it as follows.
// pure : a -> Free a
const pure = value => ({ constructor: pure, value });
// bind : Free a -> (a -> Free b) -> Free b
const bind = monad => arrow => ({ constructor: bind, monad, arrow });
// thunk : (() -> Free a) -> Free a
const thunk = eval => ({ constructor: thunk, eval });
// MonadFree : Monad Free
const MonadFree = { pure, bind };
// evaluate : Free a -> a
const evaluate = expression => {
let expr = expression;
let stack = null;
while (true) {
switch (expr.constructor) {
case pure:
if (stack === null) return expr.value;
expr = stack.arrow(expr.value);
stack = stack.stack;
break;
case bind:
stack = { arrow: expr.arrow, stack };
expr = expr.monad;
break;
case thunk:
expr = expr.eval();
}
}
};
I'll also copy my implementation of the array monad transformer from my previous answer.
// Step m a = null | { head : a, tail : ListT m a }
// ListT m a = m (Step m a)
// nil : Monad m -> ListT m a
const nil = M => M.pure(null);
// cons : Monad m -> a -> ListT m a -> ListT m a
const cons = M => head => tail => M.pure({ head, tail });
// foldr : Monad m -> (a -> m b -> m b) -> m b -> ListT m a -> m b
const foldr = M => f => a => m => M.bind(m)(step =>
step ? f(step.head)(foldr(M)(f)(a)(step.tail)) : a);
Thus, when the underlying monad is Free
then the operations are stack safe.
// replicate :: Number -> a -> ListT Free a
const replicate = n => x => n ?
cons(MonadFree)(x)(thunk(() => replicate(n - 1)(x))) :
nil(MonadFree);
// map : (a -> b) -> Free a -> Free b
const map = f => m => bind(m)(x => pure(f(x)));
// add : Number -> Free Number -> Free Number
const add = x => map(y => x + y);
// result : Free Number
const result = foldr(MonadFree)(add)(pure(0))(replicate(1000000)(1));
console.log(evaluate(result)); // 1000000
Putting it all together.
// pure : a -> Free a
const pure = value => ({ constructor: pure, value });
// bind : Free a -> (a -> Free b) -> Free b
const bind = monad => arrow => ({ constructor: bind, monad, arrow });
// thunk : (() -> Free a) -> Free a
const thunk = eval => ({ constructor: thunk, eval });
// MonadFree : Monad Free
const MonadFree = { pure, bind };
// evaluate : Free a -> a
const evaluate = expression => {
let expr = expression;
let stack = null;
while (true) {
switch (expr.constructor) {
case pure:
if (stack === null) return expr.value;
expr = stack.arrow(expr.value);
stack = stack.stack;
break;
case bind:
stack = { arrow: expr.arrow, stack };
expr = expr.monad;
break;
case thunk:
expr = expr.eval();
}
}
};
// Step m a = null | { head : a, tail : ListT m a }
// ListT m a = m (Step m a)
// nil : Monad m -> ListT m a
const nil = M => M.pure(null);
// cons : Monad m -> a -> ListT m a -> ListT m a
const cons = M => head => tail => M.pure({ head, tail });
// foldr : Monad m -> (a -> m b -> m b) -> m b -> ListT m a -> m b
const foldr = M => f => a => m => M.bind(m)(step =>
step ? f(step.head)(foldr(M)(f)(a)(step.tail)) : a);
// replicate :: Number -> a -> ListT Free a
const replicate = n => x => n ?
cons(MonadFree)(x)(thunk(() => replicate(n - 1)(x))) :
nil(MonadFree);
// map : (a -> b) -> Free a -> Free b
const map = f => m => bind(m)(x => pure(f(x)));
// add : Number -> Free Number -> Free Number
const add = x => map(y => x + y);
// result : Free Number
const result = foldr(MonadFree)(add)(pure(0))(replicate(1000000)(1));
console.log(evaluate(result)); // 1000000