Below is an example:
buy_log_df = pd.DataFrame(
[
["2020-01-02", 0, 1, 2, 2],
["2020-01-02", 1, 1, 1, 3],
["2020-01-02", 2, 2, 1, 1],
["2020-01-02", 3, 3, 3, 1],
],
columns=['date', 'sale_id', 'customer_id', "item_id", "quantity"]
)
item_df = pd.DataFrame(
[
[1, 100],
[2, 200],
[3, 300],
],
columns=['item_id', 'price']
)
item_df2 = pd.DataFrame(
[
[1, '1 3 10'],
[2, '1 3'],
[3, '2 5'],
],
columns=['item_id', 'tags']
)
As you can see here, each item in item_df
has multiple tag values as an one feature.
Here is what I've tried:
item_df2 = pd.concat([item_df2, item_df2['tags'].str.split(expand=True)], axis=1)
item_df2 = pd.melt(
item_df2,
id_vars=['item_id'],
value_vars=[0,1,2],
value_name="tags"
)
tag_log_df = item_df2[item_df2['tags'].notna()].drop("variable", axis=1,).sort_values("item_id")
tag_log_df
>>>
item_id tags
0 1 1
3 1 3
6 1 10
1 2 1
4 2 3
2 3 2
5 3 5
It looks like I can't normalize this item entity (from buy_log entity) because it has multiple duplicated item_id
s in the table.
How can I handle this case when I design the entityset?
Thanks for the question. To handle multiple tag values, you can normalize the tags into a data frame before structuring the entity set.
buy_log_df
date sale_id customer_id item_id quantity
2020-01-02 0 1 2 2
2020-01-02 1 1 1 3
2020-01-02 2 2 1 1
2020-01-02 3 3 3 1
item_df
item_id price
1 100
2 200
3 300
tag_log_df
item_id tags
1 1
1 3
1 10
2 1
2 3
3 2
3 5
With the normalized data, you can then structure the entity set.
es = ft.EntitySet()
es.entity_from_dataframe(
entity_id='buy_log',
dataframe=buy_log_df,
index='sale_id',
time_index='date',
)
es.entity_from_dataframe(
entity_id='item',
dataframe=item_df,
index='item_id',
)
es.entity_from_dataframe(
entity_id='tag_log',
dataframe=tag_log_df,
index='tag_log_id',
make_index=True,
)
parent = es['item']['item_id']
child = es['buy_log']['item_id']
es.add_relationship(ft.Relationship(parent, child))
child = es['tag_log']['item_id']
es.add_relationship(ft.Relationship(parent, child))