My aim is to calculate the covariance matrix of a set of data using numpy.einsum
. Take for instance
example_data = np.array([0.2, 0.3], [0.1, 0.2]])
The following is code I tried:
import numpy as np
d = example_data[0].shape[1]
mu = np.mean(example_data, axis=0)
data = np.reshape(example_data,(len(example_data),d,1))
mu = np.tile(mu,len(example_data))
mu = np.reshape(mu,(len(example_data),d,1))
d_to_mean = data-mu
covariance_matrix = np.einsum('ijk,kji->ij', d_to_mean, np.transpose(d_to_mean))
#I don't know how to set the subscripts correctly
Any suggestions how to make this approach workable are appreciated!
Based on the definition of a covariance matrix, the task can be solved quite easily with
tmp = np.random.rand(5,3) # 5 corresponds to 5 observations, 3 corresponds to 3 variables
tmp_mean = np.mean(tmp,axis=0)[:,None]
tmp_centered = tmp.T - tmp_mean
cov = (tmp_centered @ tmp_centered.T) / (5-1)
If you need einsum
anyway
cov_ein = np.einsum('ij,jk->ik',tmp_centered,tmp_centered.T) / (5-1)