pythonnumpyzarr

Getting a view of a zarr array slice


I would like to produce a zarr array pointing to part of a zarr array on disk, similar to how sliced = np_arr[5] gives me a view into np_arr, such that modifying the data in sliced modifies the data in np_arr. Example code:

import matplotlib.pyplot as plt
import numpy as np
import zarr


arr = zarr.open(
    'temp.zarr',
    mode='a',
    shape=(4, 32, 32),
    chunks=(1, 16, 16),
    dtype=np.float32,
)
arr[:] = np.random.random((4, 32, 32))

fig, ax = plt.subplots(1, 2)
arr[2, ...] = 0  # works fine, "wipes" slice 2
ax[0].imshow(arr[2])  # all 0s

arr_slice = arr[1]  # returns a NumPy array — loses ties to zarr on disk
arr_slice[:] = 0
ax[1].imshow(arr[1])  # no surprises — shows original random data

plt.show()

Is there anything I can write instead of arr_slice = arr[1] that will make arr_slice be a (writeable) view into the arr array on disk?


Solution

  • The TensorStore library is specifically designed to do this --- all indexing operations produce lazy views:

    import tensorstore as ts
    import numpy as np
    arr = ts.open({
      'driver': 'zarr',
      'kvstore': {
        'driver': 'file',
        'path': '.',
      },
      'path': 'temp.zarr',
      'metadata': {
        'dtype': '<f4',
        'shape': [4, 32, 32],
        'chunks': [1, 16, 16],
        'order': 'C',
        'compressor': None,
        'filters': None,
        'fill_value': None,
      },
    }, create=True).result()
    arr[1] = 42  # Overwrites, just like numpy/zarr library
    view = arr[1] # Returns a lazy view, no I/O performed
    np.array(view) # Reads from the view
    # Returns JSON spec that can be passed to `ts.open` to reopen the view.
    view.spec().to_json()
    

    You can read more about the "index transform" mechanism that underlies these lazy views here: https://google.github.io/tensorstore/index_space.html#index-transform https://google.github.io/tensorstore/python/indexing.html

    Disclaimer: I'm an author of TensorStore.