I am currently struggling with a really simple problem, but cannot seem to solve it. You can reproduce the issue with the following file and code:
test.csv
2020081217,28.6
2020081218,24.7
2020081219,-999.0
2020081220,-999.0
2020081221,-999.0
code
data = np.genfromtxt("C:/Users/col/Downloads/test.csv", delimiter=',', missing_values=["-999", "-999.0", -999, -999.0])
print(data)
output
[[ 2.02008122e+09 2.86000000e+01]
[ 2.02008122e+09 2.47000000e+01]
[ 2.02008122e+09 -9.99000000e+02]
[ 2.02008122e+09 -9.99000000e+02]
[ 2.02008122e+09 -9.99000000e+02]]
Why does none of the versions for missing_values catch the -999 in the file and replace them with NaNs or something alike? I feel like this should be simple (and probably already answered somewhere on this website), but I cannot figure it out... Thanks for any help.
There are two types of missing values. One is where the value is represent only by the delimiter. Default fill is nan
, but we can define a separate fill:
In [93]: txt1="""2020081217,28.6
...: 2020081218,24.7
...: 2020081219,
...: 2020081220,
...: 2020081221,"""
In [94]: np.genfromtxt(txt1.splitlines(),delimiter=',',encoding=None)
Out[94]:
array([[2.02008122e+09, 2.86000000e+01],
[2.02008122e+09, 2.47000000e+01],
[2.02008122e+09, nan],
[2.02008122e+09, nan],
[2.02008122e+09, nan]])
In [95]: np.genfromtxt(txt1.splitlines(),delimiter=',',encoding=None,filling_val
...: ues=999)
Out[95]:
array([[2.02008122e+09, 2.86000000e+01],
[2.02008122e+09, 2.47000000e+01],
[2.02008122e+09, 9.99000000e+02],
[2.02008122e+09, 9.99000000e+02],
[2.02008122e+09, 9.99000000e+02]])
Your case has a specific string:
In [96]: txt="""2020081217,28.6
...: 2020081218,24.7
...: 2020081219,-999.0
...: 2020081220,-999.0
...: 2020081221,-999.0"""
The other answer suggests using usemask
, returning a masked_array:
In [100]: np.genfromtxt(txt.splitlines(),delimiter=',',encoding=None, missing_values=-999.0, usemask=True)
Out[100]:
masked_array(
data=[[2020081217.0, 28.6],
[2020081218.0, 24.7],
[2020081219.0, --],
[2020081220.0, --],
[2020081221.0, --]],
mask=[[False, False],
[False, False],
[False, True],
[False, True],
[False, True]],
fill_value=1e+20)
Looking at the code, I deduce that it's doing a string match, rather than a numeric one. It can also take one value per column (I don't think it does a per-row test):
In [106]: np.genfromtxt(txt.splitlines(),delimiter=',',encoding=None,
missing_values=['2020081217','-999.0'], usemask=True, dtype=None)
Out[106]:
masked_array(data=[(--, 28.6), (2020081218, 24.7), (2020081219, --),
(2020081220, --), (2020081221, --)],
mask=[( True, False), (False, False), (False, True),
(False, True), (False, True)],
fill_value=(999999, 1.e+20),
dtype=[('f0', '<i8'), ('f1', '<f8')])
Here I gave it dtype=None
, so it returned a structured array.
missing_values
can also be dict, but I haven't figured out what it expects.
I haven't figured out how to make it replace the missing values with something (such as from the filling_values
).
You do the replace after load
In [110]: data = np.genfromtxt(txt.splitlines(),delimiter=',',encoding=None)
In [111]: data
Out[111]:
array([[ 2.02008122e+09, 2.86000000e+01],
[ 2.02008122e+09, 2.47000000e+01],
[ 2.02008122e+09, -9.99000000e+02],
[ 2.02008122e+09, -9.99000000e+02],
[ 2.02008122e+09, -9.99000000e+02]])
In [114]: data[data==-999] = np.nan
In [115]: data
Out[115]:
array([[2.02008122e+09, 2.86000000e+01],
[2.02008122e+09, 2.47000000e+01],
[2.02008122e+09, nan],
[2.02008122e+09, nan],
[2.02008122e+09, nan]])
It looks like genfromtxt
constructs a converters
from the missing and filling values, but I haven't followed the details. Here's a way of using our converter
In [138]: converters={1:lambda x: np.nan if x=='-999.0' else float(x)}
In [139]: data = np.genfromtxt(txt.splitlines(),delimiter=',',encoding=None,
converters=converters)
In [140]: data
Out[140]:
array([[2.02008122e+09, 2.86000000e+01],
[2.02008122e+09, 2.47000000e+01],
[2.02008122e+09, nan],
[2.02008122e+09, nan],
[2.02008122e+09, nan]])