I have actually a directory RealPhotos
containing 17000 jpg
photos. I would be interested in creating a train dataloader and a test dataloader
ls RealPhotos/
2007_000027.jpg 2008_007119.jpg 2010_001501.jpg 2011_002987.jpg
2007_000032.jpg 2008_007120.jpg 2010_001502.jpg 2011_002988.jpg
2007_000033.jpg 2008_007123.jpg 2010_001503.jpg 2011_002992.jpg
2007_000039.jpg 2008_007124.jpg 2010_001505.jpg 2011_002993.jpg
2007_000042.jpg 2008_007129.jpg 2010_001511.jpg 2011_002994.jpg
2007_000061.jpg 2008_007130.jpg 2010_001514.jpg 2011_002996.jpg
2007_000063.jpg 2008_007131.jpg 2010_001515.jpg 2011_002997.jpg
2007_000068.jpg 2008_007133.jpg 2010_001516.jpg 2011_002999.jpg
2007_000121.jpg 2008_007134.jpg 2010_001518.jpg 2011_003002.jpg
2007_000123.jpg 2008_007138.jpg 2010_001520.jpg 2011_003003.jpg
...
I know I can subclassing TensorDataset to make it compatible with unlabeled data with
class UnlabeledTensorDataset(TensorDataset):
"""Dataset wrapping unlabeled data tensors.
Each sample will be retrieved by indexing tensors along the first
dimension.
Arguments:
data_tensor (Tensor): contains sample data.
"""
def __init__(self, data_tensor):
self.data_tensor = data_tensor
def __getitem__(self, index):
return self.data_tensor[index]
And something along these lines for training the autoencoder
X_train = rnd.random((300,100))
train = UnlabeledTensorDataset(torch.from_numpy(X_train).float())
train_loader= data_utils.DataLoader(train, batch_size=1)
for epoch in range(50):
for batch in train_loader:
data = Variable(batch)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, data)
You first need to define a Dataset (torch.utils.data.Dataset
) then you can use DataLoader on it. There is no difference between your train and test dataset, you can define a generic dataset that will look into a particular directory and map each index to a unique file.
class MyDataset(Dataset):
def __init__(self, directory):
self.files = os.listdir(directory)
def __getitem__(self, index):
img = Image.open(self.files[index]).convert('RGB')
return T.ToTensor()(img)
Where T
refers to torchvision.transform
and Image is imported from PIL
.
You can then instanciate a dataset with
data_set = MyDataset('./RealPhotos')
From there you can use torch.utils.data.random_split
to perform the split:
train_len = int(len(data_set)*0.7)
train_set, test_set = random_split(data_set, [train_len, len(data_set)-train_len])
Then use torch.utils.data.DataLoader
as you did:
train_loader = DataLoader(train_set, batch_size=1, shuffle=True)
test_loader = DataLoader(test_set, batch_size=16, shuffle=False)