I am new to deep learning. I am trying to generate ROC curve for the following code. I am using keras. The class size is 10 and the image are RGB image of size 1001003.
target_size=(100,100,3)
train_generator = train_datagen.flow_from_directory('path',
target_size=target_size[:-1],
batch_size=16,
class_mode='categorical',
subset='training',
seed=random_seed)
valid_generator = ...
test_generator = ...
n_classes = len(set(train_generator.classes))
print(n_classes)
input_layer = keras.layers.Input(shape=target_size)
conv2d_1 = keras.layers.Conv2D(filters=64, kernel_size=(3,3), strides=1, padding='same',
activation='relu',
kernel_initializer='he_normal')(input_layer)
batchnorm_1 = keras.layers.BatchNormalization()(conv2d_1)
maxpool1=keras.layers.MaxPool2D(pool_size=(2,2))(batchnorm_1)
conv2d_2 = keras.layers.Conv2D(filters=32, kernel_size=(3,3), strides=1, padding='same',
activation='relu',
kernel_initializer='he_normal')(maxpool1)
batchnorm_2 = keras.layers.BatchNormalization()(conv2d_2)
maxpool2=keras.layers.MaxPool2D(pool_size=(2,2))(batchnorm_2)
flatten = keras.layers.Flatten()(maxpool2)
dense_1 = keras.layers.Dense(256, activation='relu')(flatten)
dense_2 = keras.layers.Dense(n_classes, activation='softmax')(dense_1)
model = keras.models.Model(input_layer, dense_3)
model.compile(optimizer=keras.optimizers.Adam(0.001),
loss='categorical_crossentropy',
metrics=['acc'])
model.summary()
model.fit_generator(generator=train_generator, validation_data=valid_generator,
epochs=200)
score = model.evaluate_generator(test_generator)
print(score)
I wan to see line of curve and also generate ROC curve. Please help.
Add the following code in your code.
import numpy as np
from sklearn import metrics
x, y = test_generator.next()
prediction = model.predict(x)
predict_label1 = np.argmax(prediction, axis=-1)
true_label1 = np.argmax(y, axis=-1)
y = np.array(true_label1)
scores = np.array(predict_label1)
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=9)
roc_auc = metrics.auc(fpr, tpr)
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic (ROC)')
plt.legend(loc="lower right")
plt.show()
Hope this works.