I'm trying to implement a simple elliptic curve encryption program but I can't get the expected output of doubling and adding a Point P
till 12P
.The curve equation isy^2 = x^3 +ax + b mod p
. According to this site 3P = [10, 6]
when P = [5, 1]
while I get 3p = [10, 5]
. The equations I use can be found on Wikipedia.
P = [5, 1]
prime = 17
a = 2
b = 2
def gcdExtended(a, b):
if a == 0:
return b, 0, 1
gcd, x1, y1 = gcdExtended(b % a, a)
x = y1 - (b // a) * x1
y = x1
return gcd, x, y
def double_point(point: list):
x = point[0]
y = point[1]
s = ((3*(x**2)+a) * (gcdExtended(2*y, prime)[1])) % prime
newx = (s**2 - x - x) % prime
newy = (s * (x - newx) - y) % prime
return [newx, newy]
def add_points(P: list, Q: list):
x1 = P[0]
y1 = P[1]
x2 = Q[0]
y2 = Q[1]
s = ((y2 - y1) * ((gcdExtended(x2-x1, prime))[1] % prime)) % prime
newx = (s**2 - x1 - x2) % prime
newy = (s * (x1 - newx) - y1) % prime
return [newx, newy]
Q = P
index = 2
while True:
if Q[0] == P[0] and Q[1] == P[1]:
print("doubling")
Q = double_point(P)
else:
print("adding")
Q = add_points(Q, P)
if index == 12 :
break
print(f"{index}P = {Q}")
index += 1
If the point [5,1]
is added successively, the following sequence is obtained:
1P = [ 5, 1]
2P = [ 6, 3]
3P = [10, 6]
4P = [ 3, 1]
5P = [ 9, 16]
6P = [16, 13]
7P = [ 0, 6]
8P = [13, 7]
9P = [ 7, 6]
10P = [ 7, 11]
11P = [13, 10]
12P = [ 0, 11]
13P = [16, 4]
14P = [ 9, 1]
15P = [ 3, 16]
16P = [10, 11]
17P = [ 6, 14]
18P = [ 5, 16]
19P = point at infinity
This can be verified e.g. here.
The problem in the posted code is that the method to determine the modular inverse, gcdExtended(a, b)
, is only valid for positive a
and b
. While in double_point
and add_points
b
has the value prime
(= 17 > 0
), a
can take negative values.
gcdExtended
generally returns wrong values for negative a
:
gcdExtended
returns for these values: gcdExtended(5, 17)[1] = 7
(which is true) and gcdExtended(-12, 17)[1] = -7
(which is false).To allow negative values for a
, e.g. the following methods can be defined, see here:
def sign(x):
return 1 if x >= 0 else -1
def gcdExtendedGeneralized(a, b):
gcd, x1, y1 = gcdExtended(abs(a), b)
return gcd, (sign(a) * x1) % b, y1 % b
Replacing gcdExtended
with gcdExtendedGeneralized
in double_point
and add_points
provides the correct values (note that the current implementation does not consider the point at infinity).