Leetcode 78 question potential solution:
class Solution(object):
def __init__(self):
self.map = {}
def helper(self, count, nums, vals, result):
if count == 0:
result += [vals]
for i in range(len(nums)):
self.helper(count - 1, nums[i+1:], vals + [nums[i]], result)
def subsets(self, nums):
result = []
result.append([])
for count in range(1,len(nums)+1):
self.helper(count, nums, [], result)
return result
For the above solution, will the time complexity be O(2^n) or will it be O(n * 2^n) ?
One can find out the complexity by looking for different N
how many times is the helper
function called, code-wise would look like the following:
class Solution(object):
def __init__(self):
self.map = {}
self.counter = 0
def helper(self, count, nums, vals, result):
self.counter += 1
if count == 0:
result += [vals]
for i in range(len(nums)):
self.helper(count - 1, nums[i + 1:], vals + [nums[i]], result)
def subsets(self, nums):
result = [[]]
for count in range(1, len(nums) + 1):
self.helper(count, nums, [], result)
return self.counter
So for:
N | Time the helper function gets called |
---|---|
1 | 2 |
2 | 8 |
3 | 24 |
4 | 64 |
5 | 160 |
6 | 384 |
7 | 896 |
8 | 2048 |
9 | 4608 |
10 | 10240 |
... | .... |
N | O(n * 2^n) |
The helper
function has a complexity of O(2^n)
and since you called for each element of the list nums
:
for count in range(1,len(nums)+1):
self.helper(count, nums, [], result)
the overall time complexity is O(n * 2^n)