In a typical N-Body simulation, at the end of each epoch, each locale would need to share its own portion of the world (i.e. all bodies) to the rest of the locales. I am working on this with a local-view approach (i.e. using on Loc
statements). I encountered some strange behaviours that I couldn't make sense out of, so I decided to make a test program, in which things got more complicated. Here's the code to replicate the experiment.
proc log(args...?n) {
writeln("[locale = ", here.id, "] [", datetime.now(), "] => ", args);
}
const max: int = 50000;
record stuff {
var x1: int;
var x2: int;
proc init() {
this.x1 = here.id;
this.x2 = here.id;
}
}
class ctuff {
var x1: int;
var x2: int;
proc init() {
this.x1 = here.id;
this.x2 = here.id;
}
}
class wrapper {
// The point is that total size (in bytes) of data in `r`, `c` and `a` are the same here, because the record and the class hold two ints per index.
var r: [{1..max / 2}] stuff;
var c: [{1..max / 2}] owned ctuff?;
var a: [{1..max}] int;
proc init() {
this.a = here.id;
}
}
proc test() {
var wrappers: [LocaleSpace] owned wrapper?;
coforall loc in LocaleSpace {
on Locales[loc] {
wrappers[loc] = new owned wrapper();
}
}
// rest of the experiment further down.
}
Two interesting behaviours happen here.
Now, each instance of wrapper
in array wrappers
should live in its locale. Specifically, the references (wrappers
) will live in locale 0, but the internal data (r
, c
, a
) should live in the respective locale. So we try to move some from locale 1 to locale 3, as such:
on Locales[3] {
var timer: Timer;
timer.start();
var local_stuff = wrappers[1]!.r;
timer.stop();
log("get r from 1", timer.elapsed());
log(local_stuff);
}
on Locales[3] {
var timer: Timer;
timer.start();
var local_c = wrappers[1]!.c;
timer.stop();
log("get c from 1", timer.elapsed());
}
on Locales[3] {
var timer: Timer;
timer.start();
var local_a = wrappers[1]!.a;
timer.stop();
log("get a from 1", timer.elapsed());
}
Surprisingly, my timings show that
Regardless of the size (const max
), the time of sending the array and record strays constant, which doesn't make sense to me. I even checked with chplvis
, and the size of GET
actually increases, but the time stays the same.
The time to send the class field increases with time, which makes sense, but it is quite slow and I don't know which case to trust here.
To demystify the problem, I also query the .locale.id
of some variables directly. First, we query the data, which we expect to live in locale 2, from locale 2:
on Locales[2] {
var wrappers_ref = wrappers[2]!; // This is always 1 GET from 0, okay.
log("array",
wrappers_ref.a.locale.id,
wrappers_ref.a[1].locale.id
);
log("record",
wrappers_ref.r.locale.id,
wrappers_ref.r[1].locale.id,
wrappers_ref.r[1].x1.locale.id,
);
log("class",
wrappers_ref.c.locale.id,
wrappers_ref.c[1]!.locale.id,
wrappers_ref.c[1]!.x1.locale.id
);
}
And the result is:
[locale = 2] [2020-12-26T19:36:26.834472] => (array, 2, 2)
[locale = 2] [2020-12-26T19:36:26.894779] => (record, 2, 2, 2)
[locale = 2] [2020-12-26T19:36:27.023112] => (class, 2, 2, 2)
Which is expected. Yet, if we query the locale of the same data on locale 1, then we get:
[locale = 1] [2020-12-26T19:34:28.509624] => (array, 2, 2)
[locale = 1] [2020-12-26T19:34:28.574125] => (record, 2, 2, 1)
[locale = 1] [2020-12-26T19:34:28.700481] => (class, 2, 2, 2)
Implying that wrappers_ref.r[1].x1.locale.id
lives in locale 1, even though it should clearly be on locale 2. My only guess is that by the time .locale.id
is executed, the data (i.e. the .x
of the record) is already moved to the querying locale (1).
So all in all, the second part of the experiment lead to a secondary question, whilst not answering the first part.
NOTE: all experiment are run with -nl 4
in chapel/chapel-gasnet
docker image.
Good observations, let me see if I can shed some light.
As an initial note, any timings taken with the gasnet Docker image should be taken with a grain of salt since that image simulates the execution across multiple nodes using your local system rather than running each locale on its own compute node as intended in Chapel. As a result, it is useful for developing distributed memory programs, but the performance characteristics are likely to be very different than running on an actual cluster or supercomputer. That said, it can still be useful for getting coarse timings (e.g., your "this is taking a much longer time" observation) or for counting communications using chplvis
or the CommDiagnostics module.
With respect to your observations about timings, I also observe that the array-of-class case is much slower, and I believe I can explain some of the behaviors:
First, it's important to understand that any cross-node communications can be characterized using a formula like alpha + beta*length
. Think of alpha
as representing the basic cost of performing the communication, independent of length. This represents the cost of calling down through the software stack to get to the network, putting the data on the wire, receiving it on the other side, and getting it back up through the software stack to the application there. The precise value of alpha will depend on factors like the type of communication, choice of software stack, and physical hardware. Meanwhile, think of beta
as representing the per-byte cost of the communication where, as you intuit, longer messages necessarily cost more because there's more data to put on the wire, or potentially to buffer or copy, depending on how the communication is implemented.
In my experience, the value of alpha
typically dominates beta
for most system configurations. That's not to say that it's free to do longer data transfers, but that the variance in execution time tends to be much smaller for longer vs. shorter transfers than it is for performing a single transfer versus many. As a result, when choosing between performing one transfer of n
elements vs. n
transfers of 1 element, you'll almost always want the former.
To investigate your timings, I bracketed your timed code portions with calls to the CommDiagnostics
module as follows:
resetCommDiagnostics();
startCommDiagnostics();
...code to time here...
stopCommDiagnostics();
printCommDiagnosticsTable();
and found, as you did with chplvis
, that the number of communications required to localize the array of records or array of ints was constant as I varied max
, for example:
locale | get | execute_on |
---|---|---|
0 | 0 | 0 |
1 | 0 | 0 |
2 | 0 | 0 |
3 | 21 | 1 |
This is consistent with what I'd expect from the implementation: That for an array of value types, we perform a fixed number of communications to access array meta-data, and then communicate the array elements themselves in a single data transfer to amortize the overheads (avoid paying multiple alpha
costs).
In contrast, I found that the number of communications for localizing the array of classes was proportional to the size of the array. For example, for the default value of 50,000 for max
, I saw:
locale | get | put | execute_on |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
2 | 0 | 0 | 0 |
3 | 25040 | 25000 | 1 |
I believe the reason for this distinction relates to the fact that c
is an array of owned
classes, in which only a single class variable can "own" a given ctuff
object at a time. As a result, when copying the elements of array c
from one locale to another, you're not just copying raw data, as with the record and integer cases, but also performing an ownership transfer per element. This essentially requires setting the remote value to nil
after copying its value to the local class variable. In our current implementation, this seems to be done using a remote get
to copy the remote class value to the local one, followed by a remote put
to set the remote value to nil
, hence, we have a get and put per array element, resulting in O(n) communications rather than O(1) as in the previous cases. With additional effort, we could potentially have the compiler optimize this case, though I believe it will always be more expensive than the others due to the need to perform the ownership transfer.
I tested the hypothesis that owned
classes were resulting in the additional overhead by changing your ctuff
objects from being owned
to unmanaged
, which removes any ownership semantics from the implementation. When I do this, I see a constant number of communications, as in the value cases:
locale | get | execute_on |
---|---|---|
0 | 0 | 0 |
1 | 0 | 0 |
2 | 0 | 0 |
3 | 21 | 1 |
I believe this represents the fact that once the language has no need to manage the ownership of the class variables, it can simply transfer their pointer values in a single transfer again.
Beyond these performance notes, it's important to understand a key semantic difference between classes and records when choosing which to use. A class object is allocated on the heap, and a class variable is essentially a reference or pointer to that object. Thus, when a class variable is copied from one locale to another, only the pointer is copied, and the original object remains where it was (for better or worse). In contrast, a record variable represents the object itself, and can be thought of as being allocated "in place" (e.g., on the stack for a local variable). When a record variable is copied from one locale to the other, it's the object itself (i.e., the record's fields' values) which are copied, resulting in a new copy of the object itself. See this SO question for further details.
Moving on to your second observation, I believe that your interpretation is correct, and that this may be a bug in the implementation (I need to stew on it a bit more to be confident). Specifically, I think you're correct that what's happening is that wrappers_ref.r[1].x1
is being evaluated, with the result being stored in a local variable, and that the .locale.id
query is being applied to the local variable storing the result rather than the original field. I tested this theory by taking a ref
to the field and then printing locale.id
of that ref, as follows:
ref x1loc = wrappers_ref.r[1].x1;
...wrappers_ref.c[1]!.x1.locale.id...
and that seemed to give the right result. I also looked at the generated code which seemed to indicate that our theories were correct. I don't believe that the implementation should behave this way, but need to think about it a bit more before being confident. If you'd like to open a bug against this on Chapel's GitHub issues page, for further discussion there, we'd appreciate that.