I am trying to use the featuretools library to make new features on a simple dataset, however, whenever I try to use a bigger max_depth
, nothing happens... Here is my code so far:
# imports
import featuretools as ft
# creating the EntitySet
es = ft.EntitySet()
es.entity_from_dataframe(entity_id='data', dataframe=data, make_index=True, index='index')
# Run deep feature synthesis with transformation primitives
feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity='data', max_depth=3,
trans_primitives=['add_numeric', 'multiply_numeric'])
When I look at the features created, I get the basic things f1*f2
and f1+f2
, but I would like more complex engineered features like f2*(f1+f2)
or f1+(f2+f1)
. I thought increasing max_depth
would do this but apparently not.
How could I do this, if at all?
I have managed to answer my own question, so I'll post it here.
You can create deeper features by running "Deep Feature Synthesis" on already generated features. Here is an example:
# imports
import featuretools as ft
# creating the EntitySet
es = ft.EntitySet()
es.entity_from_dataframe(entity_id='data', dataframe=data, make_index=True, index='index')
# Run deep feature synthesis with transformation primitives
feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity='data',
trans_primitives=['add_numeric','multiply_numeric'])
# creating an EntitySet from the new features
deep_es = ft.EntitySet()
deep_es.entity_from_dataframe(entity_id='data', index='index', dataframe=feature_matrix)
# Run deep feature synthesis with transformation primitives
deep_feature_matrix, deep_feature_defs=ft.dfs(entityset=deep_es, target_entity='data',
trans_primitives=['add_numeric','multiply_numeric'])
Now, looking at the columns of deep_feature_matrix
here is what we see (assuming a dataset with 2 features):
"f1", "f2", "f1+f2", "f1*f2", "f1+f1*f2", "f1+f1+f2", "f1*f2+f1+f2", "f1*f2+f2", "f1+f2+f2", "f1*f1*f2", "f1*f1+f2", "f1*f2*f1+f2", "f1*f2*f2", "f1+f2*f2"
I have also made a function that automatically does this (includes a full docstring):
def auto_feature_engineering(X, y, selection_percent=0.1, selection_strategy="best", num_depth_steps=2, transformatives=['divide_numeric', 'multiply_numeric']):
"""
Automatically perform deep feature engineering and
feature selection.
Parameters
----------
X : pd.DataFrame
Data to perform automatic feature engineering on.
y : pd.DataFrame
Target variable to find correlations of all
features at each depth step to perform feature
selection, y is not needed if selection_percent=1.
selection_percent : float, optional
Defines what percent of all the new features to
keep for the next depth step.
selection_strategy : {'best', 'random'}, optional
Strategy used for feature selection, if 'best',
it will select the best features for the next depth
step, if 'random', it will select features at random.
num_depth_steps : integer, optional
The number of depth steps. Every depth step, the model
generates brand new features from the features made in
the last step, then selects a percent of these new
features.
transformatives : list, optional
List of all possible transformations of the data to use
when feature engineering, you can find the full list
of possible transformations as well as what each one
does using the following code:
`ft.primitives.list_primitives()[ft.primitives.list_primitives()["type"]=="transform"]`
make sure to `import featuretools as ft`.
Returns
-------
pd.DataFrame
a dataframe of the brand new features.
"""
from sklearn.feature_selection import mutual_info_classif
selected_feature_df = X.copy()
for i in range(num_depth_steps):
# Perform feature engineering
es = ft.EntitySet()
es.entity_from_dataframe(entity_id='data', dataframe=selected_feature_df,
make_index=True, index='index')
feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity='data', trans_primitives=transformatives)
# Remove features that are the same
feature_corrs = feature_matrix.corr()[list(feature_matrix.keys())[0]]
existing_corrs = []
good_keys = []
for key in feature_corrs.to_dict().keys():
if feature_corrs[key] not in existing_corrs:
existing_corrs.append(feature_corrs[key])
good_keys.append(key)
feature_matrix = feature_matrix[good_keys]
# Remove illegal features
legal_features = list(feature_matrix.columns)
for feature in list(feature_matrix.columns):
raw_feature_list = []
for j in range(len(feature.split(" "))):
if j%2==0:
raw_feature_list.append(feature.split(" ")[j])
if len(raw_feature_list) > i+2: # num_depth_steps = 1, means max_num_raw_features_in_feature = 2
legal_features.remove(feature)
feature_matrix = feature_matrix[legal_features]
# Perform feature selection
if int(selection_percent)!=1:
if selection_strategy=="best":
corrs = mutual_info_classif(feature_matrix.reset_index(drop=True), y)
corrs = pd.Series(corrs, name="")
selected_corrs = corrs[corrs>=corrs.quantile(1-selection_percent)]
selected_feature_df = feature_matrix.iloc[:, list(selected_corrs.keys())].reset_index(drop=True)
elif selection_strategy=="random":
selected_feature_df = feature_matrix.sample(frac=(selection_percent), axis=1).reset_index(drop=True)
else:
raise Exception("selection_strategy can be either 'best' or 'random', got '"+str(selection_strategy)+"'.")
else:
selected_feature_df = feature_matrix.reset_index(drop=True)
if num_depth_steps!=1:
rename_dict = {}
for col in list(selected_feature_df.columns):
rename_dict[col] = "("+col+")"
selected_feature_df = selected_feature_df.rename(columns=rename_dict)
if num_depth_steps!=1:
rename_dict = {}
for feature_name in list(selected_feature_df.columns):
rename_dict[feature_name] = feature_name[int(num_depth_steps-1):-int(num_depth_steps-1)]
selected_feature_df = selected_feature_df.rename(columns=rename_dict)
return selected_feature_df
Here is an example of using it:
# Imports
>>> import seaborn as sns
>>> import pandas as pd
>>> import numpy as np
>>> from sklearn.preprocessing import OrdinalEncoder
# Load the penguins dataset
>>> penguins = sns.load_dataset("penguins")
>>> penguins.head()
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
0 Adelie Torgersen 39.1 18.7 181.0 3750.0 Male
1 Adelie Torgersen 39.5 17.4 186.0 3800.0 Female
2 Adelie Torgersen 40.3 18.0 195.0 3250.0 Female
3 Adelie Torgersen NaN NaN NaN NaN NaN
4 Adelie Torgersen 36.7 19.3 193.0 3450.0 Female
# Fill in NaN values of features using the distribution of the feature
>>> for feature in ["bill_length_mm", "bill_depth_mm", "flipper_length_mm", "body_mass_g", "sex"]:
... s = penguins[feature].value_counts(normalize=True)
... dist = penguins[feature].value_counts(normalize=True).values
... missing = penguins[feature].isnull()
... penguins.loc[missing, feature] = np.random.choice(s.index, size=len(penguins[missing]),p=s.values)
# Make X and y
>>> X = penguins[["bill_length_mm", "bill_depth_mm", "flipper_length_mm", "body_mass_g"]]
>>> y = penguins[["sex"]]
# Encode "sex" so that "Male" is 1 and "Female" is 0
>>> ord_enc = OrdinalEncoder()
>>> y = pd.DataFrame(ord_enc.fit_transform(y).astype(np.int8), columns=["sex"])
# Generate new dataset with more features
>>> penguins_with_more_features = auto_feature_engineering(X, y, selection_percent=1.)
# Correlations of the raw features
>>> find_correlations(X, y)
body_mass_g 0.422959
bill_depth_mm 0.353526
bill_length_mm 0.342109
flipper_length_mm 0.246944
Name: sex, dtype: float64
# Top 10% correlations of new features
>>> summarize_corr_series(find_top_percent(find_correlations(penguins_with_more_features, y), 0.1))
(flipper_length_mm / bill_depth_mm) / (body_mass_g): 0.7241123396175027
(bill_depth_mm * body_mass_g) / (flipper_length_mm): 0.7237223914820166
(bill_depth_mm * body_mass_g) * (bill_depth_mm): 0.7222108721971968
(bill_depth_mm * body_mass_g): 0.7202272416625914
(bill_depth_mm * body_mass_g) * (flipper_length_mm): 0.6425813490692588
(bill_depth_mm * bill_length_mm) * (body_mass_g): 0.6398235593646668
(bill_depth_mm * flipper_length_mm) * (flipper_length_mm): 0.6360645935216128
(bill_depth_mm * flipper_length_mm): 0.6083364815975281
(bill_depth_mm * body_mass_g) * (body_mass_g): 0.5888925994060027
In this example, we would like to predict the gender of penguins given their attributes body_mass_g
, bill_depth_mm
, bill_length_mm
and flipper_length_mm
.
You might notice these other mysterious functions I used in the example, namely find_correlations
, summarize_corr_series
and find_top_percent
. These are other convenient functions I made to help summarize the results from auto_feature_engineering
. Here is the code to them (note they haven't been documented):
def summarize_corr_series(feature_corr_series):
max_feature_name_size = 0
for key in feature_corr_series.to_dict().keys():
if len(key) > max_feature_name_size:
max_feature_name_size = len(key)
max_new_feature_corr = feature_corr_series.max()
for key in feature_corr_series.to_dict().keys():
whitespace = []
for i in range(max_feature_name_size-len(key)):
whitespace.append(" ")
whitespace = "".join(whitespace)
print(key+": "+whitespace+str(abs(feature_corr_series[key])))
def find_top_percent(series, percent):
return series[series>series.quantile(1-percent)]
def find_correlations(X, y):
return abs(pd.concat([X.reset_index(drop=True), y.reset_index(drop=True)], axis=1).corr())[y.columns[0]].drop(y.columns[0]).sort_values(ascending=False)