I am using graphframes
in pyspark for some graph type of analytics and wondering what would be the best way to create the edge list data frame from a vertices data frame.
For example, below is my vertices data frame. I have a list of ids and they belong to different groups.
+---+-----+
|id |group|
+---+-----+
|a |1 |
|b |2 |
|c |1 |
|d |2 |
|e |3 |
|a |3 |
|f |1 |
+---+-----+
My objective is to create an edge list data frame to indicate ids which appear in common groups. Please note that 1 id could appear in multiple groups (e.g. id a above is in group 1 and 3). Below is the edge list data frame that I'd like to get:
+---+-----+-----+
|src|dst |group|
+---+-----+-----+
|a |c |1 |
|a |f |1 |
|c |f |1 |
|b |d |2 |
|a |e |3 |
+---+-----+-----+
Thanks in advance!
Not sure if it's the better way to solve, but I did a workaround:
import pyspark.sql.functions as f
df = df.withColumn('match', f.collect_set('id').over(Window.partitionBy('group')))
df = df.select(f.col('id').alias('src'),
f.explode('match').alias('dst'),
f.col('group'))
df = df.withColumn('duplicate_edges', f.array_sort(f.array('src', 'dst')))
df = (df
.where(f.col('src') != f.col('dst'))
.drop_duplicates(subset=['duplicate_edges'])
.drop('duplicate_edges'))
df.sort('group', 'src', 'dst').show()
Output
+---+---+-----+
|src|dst|group|
+---+---+-----+
| a| c| 1|
| a| f| 1|
| c| f| 1|
| b| d| 2|
| e| a| 3|
+---+---+-----+
Try this:
import pyspark.sql.functions as f
df = (df
.groupby('group')
.agg(f.first('id').alias('src'),
f.last('id').alias('dst')))
df.show()
Output:
+-----+---+---+
|group|src|dst|
+-----+---+---+
| 1| a| c|
| 3| e| a|
| 2| b| d|
+-----+---+---+