I'm stuck with the following problem:
There are given n+1 discrete random variables:
X = {1,...,n} with P(x=i) = p_i
Y_i = {1,...,n_i} with P(y_i = j) = p_ij and i = 1,...,n
We do the following:
Now my questions to this:
To give you an example of what I've tried:
X = {1,2} with P(x = 1) = 0.3 and P(x = 2) = 0.7
Y_1 = {2,3} with P(y_1 = 1) = 0.5 and P(y_1 = 3) = 0.5
Y_2 = {1,5,20} with P(y_2 = 1) = 0.3, P(y_2 = 5) = 0.6 and P(y_2 = 20) = 0.1
I have tried to combine those to a single random variable Z, but I'm not sure, if that can be done that way:
Z = {2,3,1,5,20} with probabilities (0.5*0.3, 0.5*0.3, 0.3*0.7, 0.6*0.7, 0.1*0.7)
The weighted EV is correct, but the "weighted" Var is different - if it is correct to use the formula for Var of linear combination for independent random variables. (Maybe just the formula for the combined Var is wrong.)
I used R and the package "discreteRV":
install.packages("discreteRV")
library(discreteRV)
#defining the RVs
Y_1 <- RV(outcomes = c(2, 3), probs = c(0.5, 0.5)) #occures 30% of the time
Y_2 <- RV(outcomes = c(1, 5, 20), probs = c(0.3, 0.6, 0.1)) #occures 70% of the time
Z <- RV(outcomes = c(2, 3, 1, 5, 20),
probs = c(0.5*0.3, 0.5*0.3, 0.3*0.7, 0.6*0.7, 0.1*0.7))
#calculating the EVs
E(Z)
E(Y_1)*0.3 + E(Y_2)*0.7
#calculating the VARs
V(Z)
V(Y_1)*(0.3)^2 + V(Y_2)*(0.7)^2
Thank you for your help.
Actually Z
has a larger sample space expanded by Y1
and Y2
, which is not a linear superposition of two components. In other words, we should present Z
like Z = [0.3*Y1, 0.7*Y2]
rather than Z = 0.3*Y1 + 0.7*Y2
.
Since we have
V(Z) = E(Z**2)-E(Z)**2
> E(Z**2) -E(Z)**2
[1] 20.7684
> V(Z)
[1] 20.7684
We will easily find that in the term E(Z)**2
, there are cross-product terms between Y1
and Y2
, which makes V(Z) != V(Y_1)*(0.3)^2 + V(Y_2)*(0.7)^2
.