Frequently, when proving a statement in "prove" mode, I find myself in need of some intermediate statements that are not yet stated nor proved. To state them, I usually make use of the subgoal
command, followed by proof-
to change to "state" mode. In the process, however, all of the local assumptions are removed. A typical example could look like this
lemma "0 < n ⟷ ((2::nat)^n < 3^n)"
apply(auto)
subgoal
proof-
have "0<n" sorry (* here I would like to refer to the assumption from the subgoal *)
then show ?thesis sorry
qed
subgoal sorry
done
I am aware that I could state the assumptions using assume
explicitly. However, this becomes quickly rather tedious when multiple assumptions are involved. Is there an easier way to simply refer to all of the assumptions? Alternatively, is there a good way to implement statements with short proofs directly in "prove" mode?
There is the syntax subgoal premises prems
to bind the premises of the subgoal to the name prems
(or any other name – but prems
is a sensible default):
lemma "0 < n ⟷ ((2::nat)^n < 3^n)"
apply(auto)
subgoal premises prems
proof -
thm prems
There is also a method called goal_cases
that automatically gives names to all the current subgoals – I find it very useful. If subgoal premises
did not exist, you could do this instead:
lemma "0 < n ⟷ ((2::nat)^n < 3^n)"
apply(auto)
subgoal
proof goal_cases
case 1
By the way, looking at your example, it is considered a bad idea to do anything after auto
that depends on the exact form of the proof state, such as metis
calls or Isar proofs. auto
is fairly brutal and might behave differently in the next Isabelle release so that such proofs break. I recommend doing a nice structured Isar proof here.
Also note that your theorem is a direct consequence of power_strict_mono
and power_less_imp_less_base
and can be proven in a single line:
lemma "0 < n ⟷ ((2::nat)^n < 3^n)"
by (auto intro: Nat.gr0I power_strict_mono)`