c++boostclangboost-hana

Clang compiler error when using boost::hana Y-combinator


I have the following implementation of an AST, built using C++17's std::variant type, on which I would like to apply a visitor recursively. I have done this with the help of some utilities from Boost's Hana library.

#include <iostream>
#include <memory>
#include <variant>

#include <boost/hana.hpp>

namespace hana = boost::hana;


struct AddExpr;
struct SubExpr;
struct MulExpr;
struct DivExpr;

using Expr = std::variant<int, AddExpr, SubExpr, MulExpr, DivExpr>;

struct BinaryExpr
{
    BinaryExpr(std::unique_ptr<Expr> lhs, std::unique_ptr<Expr> rhs) noexcept
        : lhs{ std::move(lhs) }, rhs{ std::move(rhs) } { }

    std::unique_ptr<Expr> lhs;
    std::unique_ptr<Expr> rhs;
};

struct AddExpr : BinaryExpr { using BinaryExpr::BinaryExpr; };
struct SubExpr : BinaryExpr { using BinaryExpr::BinaryExpr; };
struct MulExpr : BinaryExpr { using BinaryExpr::BinaryExpr; };
struct DivExpr : BinaryExpr { using BinaryExpr::BinaryExpr; };


int main()
{
    Expr root {
        MulExpr{
            std::make_unique<Expr>(AddExpr{
                std::make_unique<Expr>(1),
                std::make_unique<Expr>(2),
            }),
            std::make_unique<Expr>(SubExpr{
                std::make_unique<Expr>(3),
                std::make_unique<Expr>(4),
            }),
        }
    };

    constexpr auto printer = hana::fix([](auto visitor, auto const& arg) -> void {
        hana::overload(
            [&](int val) {
                std::cout << val;
            },
            [&](AddExpr const& exp) {
                std::cout << "(";
                std::visit(visitor, *exp.lhs);
                std::cout << "+";
                std::visit(visitor, *exp.rhs);
                std::cout << ")";
            },
            [&](SubExpr const& exp) {
                std::cout << "(";
                std::visit(visitor, *exp.lhs);
                std::cout << "-";
                std::visit(visitor, *exp.rhs);
                std::cout << ")";
            },
            [&](MulExpr const& exp) {
                std::cout << "(";
                std::visit(visitor, *exp.lhs);
                std::cout << "*";
                std::visit(visitor, *exp.rhs);
                std::cout << ")";
            },
            [&](DivExpr const& exp) {
                std::cout << "(";
                std::visit(visitor, *exp.lhs);
                std::cout << "/";
                std::visit(visitor, *exp.rhs);
                std::cout << ")";
            }
        )(arg);
    });

    std::visit(printer, root);

    std::cout << "\n";

    return 0;
}

The code compiles without any warnings when using GCC 7.1+, but Clang does not seem to be able to compile it, issuing the following error instead.

<source>:54:22: error: function 'visit<boost::hana::fix_t<(lambda at <source>:47:40)> &, std::variant<int, AddExpr, SubExpr, MulExpr, DivExpr> &>' with deduced return type cannot be used before it is defined
                std::visit(visitor, *exp.lhs);
...

Is this a bug in Clang? Or am I doing something wrong, and, if so, why does this work for GCC?

Also, is there an elegant way to do what I want in Clang? Particularly, I would prefer to be able to create the printer visitor from some overloaded lambdas, rather than having to create a PrinterVisitor class with operator() overloaded for each type. However, if that's not possible, I am open to other suggestions.


Solution

  • Your exact code doesn't work on GCC trunk either: Compiler Explorero, which is funny since the releases did work: Compiler Explorer.

    My local messages are very similar: GCC

    /home/sehe/custom/boost_1_75_0/boost/hana/functional/fix.hpp|74 col 19| error: use of ‘main()::<lambda(auto:39, const auto:40&)> [with auto:39 = boost::hana::fix_t<main()::<lambda(auto:39, const auto:40&)> >; auto:40 = int]’ before deduction of ‘auto’
    ||    74 |         { return f(fix(f), static_cast<X&&>(x)...); }
    

    Clang:

    /home/sehe/custom/boost_1_75_0/boost/hana/functional/fix.hpp|74 col 18| error: function 'operator()<boost::hana::fix_t<(lambda at /home/sehe/Projects/stackoverflow/test.cpp:44:40)>, int>' with deduced return type cannot be used before it is defined
    ||         { return f(fix(f), static_cast<X&&>(x)...); }
    

    I remember when I wrote my own combinators that I couldn't get around having an implementation helper, like:

    struct F {
        template <typename Self, typename T>
        void operator()(Self const& self, T const& arg) const {
            auto bin = [&](char op, BinaryExpr const& exp) {
                std::cout << "("; std::visit(self, *exp.lhs); std::cout << op; std::visit(self, *exp.rhs); std::cout << ")"; 
            };
            hana::overload(
                [&](int val) { std::cout << val; },
                [&](AddExpr const& exp) { bin('+', exp); },
                [&](SubExpr const& exp) { bin('-', exp); },
                [&](MulExpr const& exp) { bin('*', exp); },
                [&](DivExpr const& exp) { bin('/', exp); }
            )(arg);
        }
    };
    

    See it Live On Compiler Explorer

    Explanation

    I think it merely requires default constructible lambdas, which are new to C++20: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0624r2.pdf

    Source: https://www.bfilipek.com/2019/03/lambdas-story-part2.html

    With C++20 we’ll get the following features:

    • Allow [=, this] as a lambda capture - P0409R2 and Deprecate implicit capture of this via [=] - P0806
    • Pack expansion in lambda init-capture: ...args = std::move(args)](){} - P0780
    • static, thread_local, and lambda capture for structured bindings - P1091
    • template lambdas (also with concepts) - P0428R2
    • Simplifying implicit lambda capture - P0588R1
    • Default constructible and assignable stateless lambdas - P0624R2
    • Lambdas in unevaluated contexts - P0315R4

    This leads me to believe that it can work in c++20.

    Counter-Offer

    I have some simplifications and my preferred pattern for recursive visitors. with some benefits like

    I find the maintainabiliity outweighs the convenience of declaring the visitor on the call site.

    EDIT I found a more compelling solution so I'll just put a link to this in case you're interested: Live On Compiler Explorer

    HAVE YOUR CAKE AND EAT IT, Without Boost

    I realized you can have your cake and eat it, without requiring any Boost at all:

    template <typename... F>
    struct RecursiveVisitor : F... {
        template <typename... Ts>
        void operator()(std::variant<Ts...> const& v) const {
            std::visit( std::bind(*this, std::cref(*this), std::placeholders::_1), v );
        } 
    
        using F::operator()...;
    };
    
    template <typename... F>
        RecursiveVisitor(F...) -> RecursiveVisitor<F...>;
    

    Now you can pull off your mission with e.g.:

    RecursiveVisitor const printer {
        [](auto const&, int const& v) { std::cout << v; },
        [](auto const& self, AddExpr const& exp) { self(self, '+', exp); },
        [](auto const& self, SubExpr const& exp) { self(self, '-', exp); }, 
        [](auto const& self, MulExpr const& exp) { self(self, '*', exp); },
        [](auto const& self, DivExpr const& exp) { self(self, '/', exp); },
        [](auto const& self, char op, BinaryExpr const& exp) {
            std::cout << "(";
            self(*exp.lhs);
            std::cout << op;
            self(*exp.rhs);
            std::cout << ")"; 
        }
    };
    

    Which does work across the board:

    Live On Compiler Explorer

    #include <iostream>
    #include <memory>
    #include <variant>
    #include <functional>
    
    struct AddExpr;
    struct SubExpr;
    struct MulExpr;
    struct DivExpr;
    
    using Expr = std::variant<int, AddExpr, SubExpr, MulExpr, DivExpr>;
    
    struct BinaryExpr
    {
        BinaryExpr(Expr l, Expr r);
        BinaryExpr(BinaryExpr const& o);
        std::unique_ptr<Expr> lhs, rhs;
    };
    
    struct AddExpr : BinaryExpr { using BinaryExpr::BinaryExpr; };
    struct SubExpr : BinaryExpr { using BinaryExpr::BinaryExpr; };
    struct MulExpr : BinaryExpr { using BinaryExpr::BinaryExpr; };
    struct DivExpr : BinaryExpr { using BinaryExpr::BinaryExpr; };
    
    BinaryExpr::BinaryExpr(Expr l, Expr r)
    : lhs{ std::make_unique<Expr>(l) }, rhs{ std::make_unique<Expr>(r) } { }
    
    BinaryExpr::BinaryExpr(BinaryExpr const& o)
    : lhs{ std::make_unique<Expr>(*o.lhs) }, rhs{ std::make_unique<Expr>(*o.rhs) } { }
    
    template <typename... F>
    struct RecursiveVisitor : F... {
        template <typename... Ts>
        void operator()(std::variant<Ts...> const& v) const {
            std::visit( std::bind(*this, std::cref(*this), std::placeholders::_1), v );
        } 
    
        using F::operator()...;
    };
    
    template <typename... F>
        RecursiveVisitor(F...) -> RecursiveVisitor<F...>;
    
    int main()
    {
        RecursiveVisitor const printer {
            [](auto const&, int const& v) { std::cout << v; },
            [](auto const& self, AddExpr const& exp) { self(self, '+', exp); },
            [](auto const& self, SubExpr const& exp) { self(self, '-', exp); }, 
            [](auto const& self, MulExpr const& exp) { self(self, '*', exp); },
            [](auto const& self, DivExpr const& exp) { self(self, '/', exp); },
            [](auto const& self, char op, BinaryExpr const& exp) {
                std::cout << "(";
                self(*exp.lhs);
                std::cout << op;
                self(*exp.rhs);
                std::cout << ")"; 
            }
        };
    
        for (Expr root : { Expr
                { MulExpr{ AddExpr{ 1, 2 }, SubExpr{ 3, 4 } } },
                { DivExpr{ 1, MulExpr{ 7, SubExpr{ 3, 4 } } } },
            }) 
        {
            printer(root);
            std::cout << "\n";
        }
    }
    

    Printing

    ((1+2)*(3-4))
    (1/(7*(3-4)))
    

    I realize this puts duplicates the Y-combinator pattern manually, but at least it removes all bottlenecks. Also, not how the shared char, BinExpr& overload is elegantly "just another overload".