While doing some basic algebra, I frequently arrive at a subgoal of the following type (sometimes with a finite sum, sometimes with a finite product).
lemma foo:
fixes N :: nat
fixes a :: "nat ⇒ nat"
shows "(a 0) = (∑x = 0..N. (if x = 0 then 1 else 0) * (a x))"
This seems pretty obvious to me, but neither auto
nor auto cong: sum.cong split: if_splits
can handle this. What's more, sledgehammer
also surrenders when called on this lemma. How can one efficiently work with finite sums and products containing if-then-else
in general, and how to approach this case in particular?
My favourite way to do these things (because it is very general) is to use the rules sum.mono_neutral_left
and sum.mono_neutral_cong_left
and the corresponding right
versions (and analogously for products). The rule sum.mono_neutral_right
lets you drop arbitrarily many summands if they are all zero:
finite T ⟹ S ⊆ T ⟹ ∀i∈T - S. g i = 0
⟹ sum g T = sum g S
The cong
rule additionally allows you to modify the summation function on the now smaller set:
finite T ⟹ S ⊆ T ⟹ ∀i∈T - S. g i = 0 ⟹ (⋀x. x ∈ S ⟹ g x = h x)
⟹ sum g T = sum h S
With those, it looks like this:
lemma foo:
fixes N :: nat and a :: "nat ⇒ nat"
shows "a 0 = (∑x = 0..N. (if x = 0 then 1 else 0) * a x)"
proof -
have "(∑x = 0..N. (if x = 0 then 1 else 0) * a x) = (∑x ∈ {0}. a x)"
by (intro sum.mono_neutral_cong_right) auto
also have "… = a 0"
by simp
finally show ?thesis ..
qed