rggplot2labellegendcartesian-coordinates

Get cartesian coordinates for plot area ggplot2


I would like to position labels close to the legend.

In the code below I have hardcoded (x,y) values in geom_label to get desired result for the current dataframe:

#  Creating dataframe
library(ggplot2)
values <- c(rep(0,2), rep(2,3), rep(3,3), rep(4,3), 5, rep(6,2), 8, 9, rep(11,2) )
obs_number <- c(rep(18,18))
value_1 <- c(rep(4,18))
value_2 <- c(rep(7,18))
value_3 <- c(rep(3,18))
  
data_to_plot <- data.frame(values, obs_number, value_1, value_2, value_3)
#  Calculate max frequency value for using in `geom_label`

frequency_count <- data_to_plot %>% group_by(values) %>% count()%>% arrange(n)
max_frequency <- max(frequency_count$n)

# Plot
ggplot(data_to_plot, aes(x = values)) +
  geom_histogram(aes(y = ..count..), binwidth = 1, colour= "black", fill = "white") +
  geom_density(aes(y=..count..), fill="blue", alpha = .25)+
  
  
  geom_vline(aes(xintercept = value_1),
             color="red", linetype = "dashed", size = 0.5, alpha = 1) +
  
  geom_vline(aes(xintercept = value_1),
             color="forestgreen", linetype="dashed", size = 0.5, alpha = 1) +
  
  
  geom_vline(aes(xintercept = value_3),
             color="purple", linetype = "dashed", size = 0.5, alpha = 1) +
  
  
  geom_label(aes(label = obs_number, y = max_frequency*0.87, x = (max(values) - 2.2), color = 'blue'), size = 3.5, alpha = 1) +
  geom_label(aes(label = value_1, y = max_frequency * 0.83, x = (max(values) - 2.2 ), color = 'forestgreen'), size = 3.5, alpha = 1) +
  geom_label(aes(label = value_2, y = max_frequency * 0.79, x = (max(values) - 2.2) , color = 'purple'), size = 3.5, alpha = 1) +
  geom_label(aes(label = value_3, y = max_frequency * 0.75, x = (max(values) - 2.2) , color = 'red'), size = 3.5, alpha = 1) +
  
  
  scale_color_manual(name="Values", 
                     labels = c("Observations number",
                                "value_1",
                                "value_2",
                                "value_3"
                     ), 
                     
                     values = c( "blue",
                                 "forestgreen",
                                 "purple",
                                 "red")) +
  
  labs(title = "relevant_title", y = "Distribution fors DLT values", x = "DLT for the route: average values per batch") +
  theme(plot.title = element_text(hjust = 0.5), 
        axis.title.x = element_text(colour = "darkblue"),
        axis.text.x = element_text(face="plain", color="black", 
                                   size=10, angle=0),
        axis.title.y = element_text(colour = "darkblue"),
        axis.text.y = element_text(face="plain", color="black", 
                                   size=10, angle=0),
        legend.position = c(.90, .80)
  )+
  
  
  labs(title="DLT values", y = "frequency", x = "days")+
  scale_x_continuous(breaks = seq(0, max(data_to_plot$values), 1))

This is desired result: Desired result

But this will not work for all datasets. Plot for the first 14 values: labels are not located close to the legend

Question:

How can I get cartesian coordinates of the plot area, so I would replace max_frequency and max(values) in geom_label and align labels with the legend, given that legend.position = c(.90, .80).

Other alternatives are also welcome.


Solution

  • Under the flag of 'alternatives are also welcome': why not use a text glyph for the geom_vline()s and override the actual labels?

    I rearranged the code a bit for my own understanding, but here is an example:

    library(tidyverse)
    #> Warning: package 'tibble' was built under R version 4.0.3
    #> Warning: package 'tidyr' was built under R version 4.0.3
    #> Warning: package 'readr' was built under R version 4.0.3
    #> Warning: package 'dplyr' was built under R version 4.0.3
    values <- c(rep(0,2), rep(2,3), rep(3,3), rep(4,3), 5, rep(6,2), 8, 9, rep(11,2) )
    obs_number <- c(rep(18,18))
    value_1 <- c(rep(4,18))
    value_2 <- c(rep(7,18))
    value_3 <- c(rep(3,18))
    
    data_to_plot <- data.frame(values, obs_number, value_1, value_2, value_3)
    
    # Extra dataframe for storing the xintercepts and labels
    vals <- data.frame(xintercept = c(18, 4, 7, 3),
                       label = c("Observations number", "value_1", "value_2", "value_3"))
    
    
    frequency_count <- data_to_plot %>% group_by(values) %>% count()%>% arrange(n)
    max_frequency <- max(frequency_count$n)
    
    ggplot(data_to_plot, aes(x = values)) +
      geom_histogram(aes(y = ..count..), 
                     binwidth = 1, colour= "black", fill = "white") +
      geom_density(aes(y=..count..), 
                   fill="blue", alpha = .25)+
      geom_vline(aes(xintercept = xintercept, color = label),
                 data = vals[2:nrow(vals), ], 
                 linetype = "dashed", size = 0.5, alpha = 1,
                 # Give different legend glyph for vlines
                 key_glyph = draw_key_text) +
      scale_color_manual(
        name= "Values", 
        limits = vals$label,
        values = c("blue", "forestgreen", "purple", "red"),
        # Override the labels and set size to something sensible
        guide = guide_legend(override.aes = list(label = vals$xintercept, 
                                                 size = 3.88))
      ) +
      labs(title = "relevant_title", y = "Distribution fors DLT values", 
           x = "DLT for the route: average values per batch") +
      theme(plot.title = element_text(hjust = 0.5), 
            axis.title.x = element_text(colour = "darkblue"),
            axis.text.x = element_text(face="plain", color="black", 
                                       size=10, angle=0),
            axis.title.y = element_text(colour = "darkblue"),
            axis.text.y = element_text(face="plain", color="black", 
                                       size=10, angle=0),
            legend.position = c(.90, .80)
      )+
      labs(title="DLT values", y = "frequency", x = "days")+
      scale_x_continuous(breaks = seq(0, max(data_to_plot$values), 1))
    

    Created on 2021-01-08 by the reprex package (v0.3.0)