pythonopencvkerasadaptive-threshold

Adaptive Threshold error: (-215:Assertion failed) src.type() == CV_8UC1 in function 'adaptiveThreshold'


I am working on pre-trained vgg16 model, for that I need to have input size of image file to be (224,224,3).

The code I am working on is:

from tensorflow.keras.preprocessing import image
import cv2
import matplotlib.pyplot as plt

img = image.load_img('abc.jpg',target_size=(224,224))
img = image.img_to_array(img)

print(img.shape)
## output : (224,224,3)
img_grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#plt.imshow(img_grey)

th3 = cv2.adaptiveThreshold(img_grey,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
plt.figure(figsize=(20,10))
plt.imshow(th3)
error                                     Traceback (most recent call last)
<ipython-input-88-2a8a27b965ed> in <module>
     17 #plt.imshow(img_grey)
     18 
---> 19 th3 = cv2.adaptiveThreshold(img_grey,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
     20 plt.figure(figsize=(20,10))
     21 plt.imshow(th3)

error: OpenCV(4.1.0) /io/opencv/modules/imgproc/src/thresh.cpp:1627: error: (-215:Assertion failed) src.type() == CV_8UC1 in function 'adaptiveThreshold'

Help me in resolving the issue.


Solution

  • The error says the solution: src.type() == CV_8UC1 meaning you need to set your image type to the uint8 source

    So if you redefine your img variable:

    img = image.img_to_array(img, dtype='uint8')
    

    Problem will be solved but I have a question.

    Why do you define the below statement?

    img_grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    

    How do you know load_img loads the image in BGR fashion?

    We know opencv loads the image cv2.imread in BGR fashion.

    The statement is wrong, since load_img loads the image in RGB format source

    Therefore the correct statement will be:

    img_grey = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    

    or you can do:

    img = image.load_img('15f8U.png', grayscale=True, target_size=(224, 224))
    

    Correct Code:

    from keras.preprocessing import image
    import cv2
    import matplotlib.pyplot as plt
    
    img = image.load_img('15f8U.png', grayscale=True, target_size=(224, 224))
    img = image.img_to_array(img, dtype='uint8')
    
    print(img.shape)
    ## output : (224,224,3)
    #plt.imshow(img_grey)
    
    th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
    plt.figure(figsize=(20,10))
    plt.imshow(th3, cmap="gray")
    plt.show()